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Preface

We are pleased to present the continuation of the series Lecture Notes in Physics
emerging from the Euroschool on Exotic Beams. This school, initiated in Leuven
(Belgium) in 1993, has been running every year (with one exception in 1999). Based
on lectures given at the Euroschool, the Lecture Notes provide an introduction for
graduate students and young researchers to novel and exciting fields of physics with
radioactive ion beams and their applications. The fourth volume in this series covers
selected material presented in Euroschool lectures between 2007 and 2011.

Since the late 80s, the field of radioactive ion beams has been rapidly develop-
ing and substantially expanding. While many of its roots were founded in Europe,
and also leadership of the field was for many years concentrated in Europe, there
are meanwhile intense efforts worldwide to build and exploit dedicated second-
generation radioactive beam facilities. The exciting physics of radioactive ions is
mainly linked to the study of nuclear structure under extreme conditions of isospin,
mass, spin and temperature. Radioactive ion beam science addresses problems in
nuclear astrophysics, solid-state physics and fundamental interactions. Furthermore,
important applications and spin-offs also originate from this basic research. The de-
velopment of new production, acceleration and ion manipulation techniques and
the construction of new detectors is also an important part of this science. A major
aim is the development of a unified picture of the atomic nucleus, to understand
the structure and dynamics of nuclei and to provide reliable predictions of nuclear
structure properties within the “Terra Incognita”, the regions in the nuclear chart
which cannot be explored with present experimental techniques.

As with previous volumes, the present Lecture Notes do not comprise a com-
plete overview of the field, but represent sample topics of theory and experiment.
Since the appearance of the latest volume in 2009, and already before, many new
subjects were covered in the lectures, and some of them are presented here. The
topics have been selected by the editors to exhibit recent advances in the field and
to complement previous Lecture Notes. None of them has been covered in previous
volumes, all represent an active field of current research, and all authors are well
known experts in their domains and are highly respected scientists. Their contri-
butions to this book are not meant to be review-type articles rather they provide a
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vi Preface

modern introduction to a specific subject in a didactic way, given by practitioners at
the forefront of scientific research. This approach has proved to be successful and
the Euroschool Lecture Notes are popular among both students and scientists. The
content of volumes I, II and III of this series is available on the Euroschool website
http://www.euroschoolonexoticbeams.be. We hope that the present volume will be
no less successful than the previous editions.

The Euroschool concept began as a European initiative. From the start the in-
tention was to gather original questions, methods and results from the field of ra-
dioactive beams and exotic nuclei, and to bring them to the attention of students and
young researchers working in this domain both within Europe and overseas. The
school has, at all times, been open for European and international participants. Since
2001 the Euroschool has traveled to various locations and countries throughout Eu-
rope. Events took place in Finland (2001, 2011), France (2002, 2007), Spain (2003,
2010), United Kingdom (2004), Germany (2005), Italy (2006), Poland (2008), Bel-
gium (2009), Greece (2012), and most recently in Russia (2013). The evident suc-
cess of the Euroschool on Exotic Beams originates to a large extent from the ex-
cellence of the lecturers invited to share their knowledge with the students and the
pleasant, informal atmosphere which generates a valuable forum for discussions.
Despite some organizational changes which occurred during this time, the scope,
format, spirit, and popularity among young participants has been maintained. It is
our pleasure—and debt—to thank the sponsors for their support, which makes the
Euroschool events possible:

• Demokritos—National Center for Scientific Research, Athens (Greece)
• ECT∗, European Centre for Theoretical Studies in Nuclear Physics and Related

Areas, Trento (Italy)
• GANIL—Grand Accelerateur National d’Ions Lourds, Caen (France)
• Gobierno de España—Ministerio de Economia y Competitividad—FNUC Net-

work and CPAN Ingenio 2010, Madrid (Spain)
• GSI—Helmholtz Centre for Heavy Ion Research, Darmstadt (Germany)
• HIC-4-FAIR—Helmholtz International Center for FAIR, Darmstadt (Germany)
• IFIC-CSIC—Instituto de Fisica Corpuscular, Consejo Superior de Investiga-

ciones Cientificas, Madrid (Spain)
• INFN—Instituto Nazionale di Fisica Nucleare (Italy)
• ISOLDE-CERN, Geneva (Switzerland)
• JINR—Joint Institute for Nuclear Research, Dubna (Russia)
• JYFL—University of Jyväskylä (Finland)
• KU Leuven—Instituut voor Kern- en Stralingsfysica, Leuven (Belgium)
• RuG-KVI—Kernfysisch Versneller Instituut, Groningen (The Netherlands)
• UCL—Centre de Recherche du Cyclotron, Louvain-la-Neuve (Belgium)
• University of Warsaw (Poland)
• USC—University of Santiago de Compostela (Spain)

Finally, we would like to thank all who have contributed to this volume. First
of all to the authors who have given excellent lectures for the Euroschool students,
and who have invested time and effort in preparing the contributions to this book

http://www.euroschoolonexoticbeams.be
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in a comprehensive and pedagogical way. Secondly, we thank our colleagues on the
Board of Directors of the Euroschool, who supported the development of this vol-
ume with interest and for their valuable ideas. Last, but not least, it is our pleasure to
thank Dr. Chris Caron and his colleagues at Springer Verlag for the encouragement
and continuous support in a fruitful collaboration.

Marek Pfützner
Christoph Scheidenberger

University of Warsaw, Poland
GSI Darmstadt and University of Giessen, Germany
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Chapter 1
Clustering in Light Nuclei; from the Stable
to the Exotic

Martin Freer

1.1 Clusters and Correlations in Context

The structure of nuclear matter is rich and varied. In one light the nucleus may be-
have like a liquid drop, with its shape and size corresponding to a balance between
the long(ish) range attractive and short range repulsive behaviour of the nucleon-
nucleon interaction and the charges of the constituent protons. This liquid drop dis-
plays collective properties such as vibrations where vibrational modes distort the
nuclear surface; it can be encouraged to deform and then can be rotated—as the
droplet spins it stretches which provides a mechanism for the determination of the
equation-of-state of the fluid. At a critical angular momentum the droplet will fis-
sion. Similarly as the mass of a nucleus increases, typically so does the number of
protons and hence the charge. The repulsive Coulomb energy should cause the nu-
cleus to spontaneously fission when the number of protons is close to 100. However,
it is at this point that another crucial feature contributes which allows nuclei to exist
beyond that point—shell effects. Shell structure, which features for light and heavy
nuclei alike, is associated with the quantal properties of the nucleus and marks a
deviation from the constituent particles to a picture in which the particles are rep-
resented by standing waves. The associated quantum states are those of the nuclear
shell model and give rise to a sequence of magic numbers which are associated with
enhanced stability. A superposition of the macroscopic liquid drop and microscopic
shell model-like behaviour is required to describe the stability of nuclei beyond the
point at which the charged liquid drop should explode.

For light nuclei there is a similar interplay between the collective and single-
particle nature, but here details of the nature of the interaction between the nucleons
becomes increasingly important. Correlations become a dominant feature. The pair-
ing interaction is evident in the nature of the drip-lines, which define the limits
of stability on both the proton and neutron-rich side of the chart of nuclides (see
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Fig. 1.1 Light nuclei. Filled squares are either stable or beta-decay, unfilled particle (neutron, pro-
ton or α) decay. The arrows show the paths corresponding to the removal of a proton or α-particle
from 10C. The diagram on the right hand side illustrates the 4th order Brunian knot

Fig. 1.1). For the helium nuclei, 4He is stable, whereas 5He is not. Similarly, 6He
and 8He are stable and 7He is not. The difference being that in addition to the 4He
core the stable isotopes have even numbers of neutrons, whereas the unstable ones
do not. 6He and 8He are known as Borromean nuclei, as for example in the case of
6He if a neutron is removed then the other two components dissociate; further if the
α-particle is extracted then this leaves the unbound 2n system.

As an example of potentially exotic structures on the proton-rich side the 10C
nucleus sits at the head of a loop around unbound nuclei which include 9B and
8Be. 10C may be thought of being composed of two protons and two α-particles
and if any of the components are removed then the other three dissociate. This may
be thought as a super-Borromean nucleus, or recognising that Borromean systems
belong to a class of mathematical objects called Brunian knots then 10C is a nucleus
which is 4th order knot (as illustrated in Fig. 1.1).

These are rather extreme examples of correlations, but they are rather common-
place in light nuclei and have a determining role when it comes to the structure.
These correlations can be spatial in addition to energy or momentum and then are
referred to as clusters. The most prevalent cluster is the α-particle due to its re-
markably high binding and inertness. This contribution examines some of the basic
underlying principles behind the formation of clusters and examines some of the
key areas experimentally where they strongly feature.

1.2 Clusters in First Principles Models

The formation of structures in nuclei that have large scale clustering is an intriguing
phenomenon and is in part driven by correlations which stem from the details of
the nucleon-nucleon interaction. For example, the ab initio Green’s Function Monte
Carlo (GFMC) calculations of 8Be [1] predict the structure of nuclei based upon a
starting point which is the nucleon-nucleon interaction expressed in terms of all two-
body and three-body components. The two-body interactions are a parameterisation
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Fig. 1.2 The Green’s
Function Monte Carlo
calculations of the density of
8Be. The left and right-hand
images are the densities
calculated in the laboratory
and intrinsic frames,
respectively [1]. The 2α
cluster structure is clearly
evident

of the n–n force as determined from nucleon-nucleon scattering. It is not possible to
determine the 3-body force in the same way, but is included through a parameterisa-
tion of terms such as the higher order pion exchange components devised by Fujita
and Miyazawa [2]. In this manner the interaction is ab initio motivated rather than
being grown from QCD. Given, that the model is one which contains the nucleonic
degrees of freedom, it is somewhat remarkable that such an approach yields a 8Be
ground state, Fig. 1.2, that is clearly clustered [1]. At this point it is thus tempting
to assert that the nucleus 8Be corresponds to an α–α cluster structure in the ground
state.

There have been many recent developments in the field of nuclear clusters in-
cluding the ability to perform ab initio calculations of the light nuclei, such as the
Green’s Function Monte Carlo methods and Antisymmetrized Molecular Dynam-
ics (Sect. 1.4.4) and Chiral Effective Field Theory (where nuclear properties are
calculated on the lattice), the appearance of both experimental and theoretical ev-
idence for molecular structures (Sect. 1.7) and the renewed focus on cluster states
in nuclear synthesis, in particular the Hoyle-state in 12C which may possess an α-
condensate structure (Sect. 1.4.2). The following section attempts to provide a basic
understanding of some of the underlying principles.

1.3 Appearance of the Nuclear Cluster from the Mean-Field

The possibility that the α-particles could be rearranged in some geometric fashion
was realised even in the earliest days of the subject. An examination of the bind-
ing energy per nucleon of the light nuclei (Fig. 1.3—left-hand-side) shows that the
nuclei which have even, and equal, number of protons and neutrons (so-called α-
conjugate nuclei) are particularly stable, 8Be, 12C, 16O, 20Ne, . . . . Figure 1.3, right-
hand-side, shows the binding energy per nucleon plotted against the energy of the
first excited state for a variety of nuclei. The nucleus 4He stands out as being both
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Fig. 1.3 (Left panel) Binding energy per nucleon of light nuclear systems (up to A= 28), the lines
connect isotopes of each element. The “α-particle nuclei” are marked by the circles. (Right panel)
Excitation energy of first excited states plotted versus binding energy per nucleon for nuclei up to
A= 20. Good clusters should have both high binding energies and first excited states. The nucleus
4He is clearly an outstanding cluster candidate. The box drawn includes nuclei which may also
form clusters: 12C, 14O, 14C, 15N and 16O

stable and inert. These systems were also considered by Hafstad and Teller [3], who
characterised the binding energy with number of “bonds” or interactions between
the α-particles (Fig. 1.4). The rather linear relationship pointed to an apparently con-
stant α–α interaction and the inertness of the α-particle in the ground states of these
nuclei (it should be noted that this view is not one which is currently held, where the
cluster structure is believed to be eroded in most ground-states). In essence, what
this reveals is that the binding energies of suchNα nuclei (N being an integer repre-
senting the number of α-particles) can be described in terms of N(BEα)+N ·Bαα ,
where BEα is the binding energy of the α-particle and Bαα is the energy associated
with the α–α interaction. In turn this may be indicative of the important of p–p,
n–n and n–p correlation energies associated with occupation of common orbitals in
nuclei with even and equal numbers of protons and neutrons (α-conjugate nuclei).

Earlier Morinaga had postulated, in a rather extreme prediction for the time, that
it should be possible for the α-particles to arrange themselves in a linear fashion [4].
The idea that the cluster should not be manifest in the ground-state but emerge as the
internal energy of the nucleus is increased was realised to be key in the 1960’s [5].
For a nucleus to develop a cluster structure it must be energetically allowed. Asymp-
totically, when the nucleus is separated into its cluster components an energy equiv-
alent to the mass difference between the host and the clusters must be provided.
There is an additional contribution which is the interaction between clusters which
is required to fully separate them. In other words, the cluster structure would expect
to be manifest close to, and probably slightly below, the cluster decay threshold.
This was the view reached by Ikeda and co-workers, and is summarised in the di-
agram in Fig. 1.5. The diagram illustrates that each new cluster degree of freedom
arises as the cluster decay threshold is approached, or crossed. Thus, there is the
gradual transition from the compact ground-state to the full liberation of the Nα
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Fig. 1.4 Binding energy per
nucleon of A= 4n nuclei
versus the number of α–α
bonds. The analysis by
Hafstad and Teller [3]
suggested that the ground
states of A= 4n (n being an
integer, i.e. 1, 2, 3 . . . ),
α-conjugate, nuclei could be
described by a constant
interaction energy scaled by
the number of bonds. For 8Be
there is one bond, 12C—3,
16O—6, 20Ne—9, 24Mg—12
and for structural reasons (the
geometric packing of the
α-particles) 28Si—16

degree of freedom. Schematically, the diagram shows a linear arrangement of α-
particles at the Nα-limit, though this need not be the most stable configuration. In
fact, it may be argued that the linear structure has an inherent instability [7], though
many have interpreted this limit as representing a linear structure.

There is a second key ingredient whose role greatly influences the possible ge-
ometric arrangements of the clusters—and that is symmetries. These symmetries
can be thought of as arising from the packing of the α-particles, but have a deeper
origin which relates to the quantal properties if the system. In order to illustrate
this, we start with an analysis of a rather simple and schematic approach to the nu-
clear mean-field, but one which is nevertheless rather powerful. In the application
of the harmonic oscillator (HO) to the nuclear problem, it is assumed that each nu-
cleon moves within a parabolic potential (i.e. a linear restoring force) created by the
mean-interaction of all of the other constituents. The solution of the Schrödinger
equation then yields the well known energy levels

E = �ω(n+ 3/2) (1.1)

for the three dimensional nucleus, where oscillations can be along any of the three
cartesian coordinate axes and n is the number of oscillator quanta. If the nucleus,
or equivalently potential, is deformed, for example stretched along the z-axis, then
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Fig. 1.5 The Ikeda picture
[5], from [6]. The diagram
shows how the cluster degree
of freedom evolves as the
excitation energy increases.
The numbers indicate the
excitation energies at which
the cluster structures should
appear—these are the binding
energies of the cluster
components in the parent
nucleus. The important
concept relayed by this
diagram is that a cluster
degree of freedom is only
liberated close to a cluster
decay threshold. Thus, for
heavy systems the Nα degree
of freedom only appears at
the highest energies

the size of the potential in the x and y-directions must shrink in order to conserve
the nuclear volume. The extended potential in the z-direction lowers the oscillation
frequency and, for an axially symmetric potential, is increased in the perpendicular
direction. Thus, the degeneracy implicit in (1.1), is removed and

E = �ω⊥n⊥ + �ωznz + 3

2
�ω0 (1.2)

where the characteristic oscillator frequencies for oscillations perpendicular (⊥) and
parallel (z) to the deformation axis are now required. These are constrained such that
ω0 = (2ω⊥ +ωz), and the quadrupole deformation is given by

ε = ε2 = (ω⊥ −ωz)/ω0. (1.3)

The total number of oscillator quanta is the sum of those on the parallel and perpen-
dicular axes (n⊥ + nz).

The characteristic energy levels of the deformed harmonic oscillator are shown
in Fig. 1.6 [8]. The striking feature is the crossings of levels (regions of high de-
generacy) which occur for axial deformations of (ω⊥ : ωz) 2:1 and 3:1. In fact, such
degeneracies occur whenever the ratios ωx : ωy : ωz = a : b : c where a, b and c are
simple integers. Here shell structure is generated and corresponding deformed magic
numbers emerge. In fact, the magic numbers reveal some particularly interesting be-
haviour. If rather than examining the magic numbers the sequence of degeneracies is
explored, then the sequence of spherical degeneracies (2, 6, 12, 20, . . . ) is repeated
twice at a deformation of 2:1 and three times at 3:1. This pattern would indicate
two interacting spherical harmonic oscillator potentials at 2:1 and three at 3:1, etc.
Here the symmetry appears within the magic numbers. These ideas were articulated
mathematically by Nazarewicz and Dobaczewski [10].
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Fig. 1.6 The deformed
harmonic oscillator. The shell
structure which appears at
ε2 = 0 vanishes as the
potential is deformed, but
reappears at deformations of
2:1, 3:1, etc. It is at these
shell closures that cluster
structure appears. The
numbers in the circles
indicate the degeneracy of the
level scheme at the crossing
points, from Ref. [9]

These symmetries have been explored elsewhere in detail in order to identify par-
ticular cluster partitions. Building on some of the earlier work of Bengtsson [11],
Rae [12] focussed on the details of the deformed magic numbers in order to probe
explicitly the cluster decompositions. These are shown in Table 1.1. Rae demon-
strated that the deformed magic numbers could be expressed as the sums of spherical
ones. This description locates at each deformation the associated cluster structure.
At a deformation of 2:1 the superdeformed cluster states should be found in 8Be
(α + α), 20Ne (16O + α), 32S (16O + 16O). . . and at 3:1—hyperdeformation—12C
(α + α + α), 24Mg (α + 16O + α), etc. Thus, the combination of the ideas of Rae
and the Ikeda-picture permit the excitation-energy, deformation and single-particle
configuration of cluster states to be determined.

The symmetries indicate a mapping between the shell structure and particular
cluster states. However, the link runs deeper. We examine the rather trivial case of
8Be. The levels which are labelled with degeneracy 2 are those with the oscillator
quantum numbers [n⊥, nz] = [0,0] and [0,1]. Each of these levels would be oc-
cupied by pairs of protons and pairs of neutrons with their spins coupled to zero.
The density distributions of the particles is given by the square of the corresponding
wave-functions, ϕ0,0 and ϕ0,1. The overall 8Be density is given by |ϕ0,0|2 + |ϕ0,1|2.
These three components are shown in Fig. 1.7. The feature which emerges is one
in which the density is double humped corresponding to the localisation of the pro-
tons and neutrons within two “α-particles”. Interestingly, the observed distribution
is generated by particles moving in an axially deformed potential, this generates a
clustered density distribution which then in turn creates the mean-field in which the
particles move. This latter field is not identical to the first. Clearly, to provide sta-
ble solutions, self consistent approaches are required. Some of these are described
later (e.g. Antisymmetrized Molecular Dynamics (AMD) and Fermionic Molecular
Dynamics (FMD)).

The above operation can be also applied to the 3:1 deformed shell closure, where
we consider the three lowest orbits which are labelled with degeneracy 2. These
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Table 1.1 Relationship between the deformed magic numbers at deformations of 2:1 and 3:1 and
spherical cluster decompositions from [12]. For example, at a deformation of 2:1 the neutron and
proton magic numbers 4, 10 and 16 can be decomposed into the spherical neutron and proton
magic numbers 2+ 2, 8+ 2 and 8+ 8. Thus, one would expect at a deformation of 2:1 the cluster
structures α + α, α + 16O and 16O+ 16O to appear

ω⊥ : ωz = 2 : 1 ω⊥ : ωz = 3 : 1

Magic
numbers
at 2:1

Spherical
magic
numbers

Associated
cluster
configuration

Magic
numbers
at 3:1

Spherical
magic
numbers

Associated
cluster
configuration

4 2+ 2 α + α 6 2+ 2+ 2 α + α + α
10 8+ 2 16O+ α 12 2+ 8+ 2 α + 16O+ α
16 8+ 8 16O+ 16O 18 8+ 2+ 8 16O+ α +16 O

28 20+ 8 40Ca+ 16O 24 8+ 8+ 8 16O+ 16O+ 16O

40 20+ 20 40Ca+ 40Ca 36 8+ 20+ 8 16O+ 40Ca+ 16O

Fig. 1.7 The density corresponding to the HO configurations for (a) 8Be and (c) 12C. In (a) the
square of the (nx, ny, nz)= (0,0,0) and (0,0,1) orbits are plotted as is their sum (solid line). The
square of the (0,0,0), (0,0,1) and (0,0,2) orbits together with their sum (solid line) are shown in
(c). Parts (b) and (d) show the separation into the two and three-centered components, respectively.
These show the individual α-particle densities

are the [n⊥, nz] = [0,0], [0,1] and [0,2] HO levels. Figures 1.7 and 1.8 shows the
densities which correspond to these three orbits. What can be clearly observed is
that at the deformation of 3:1 there is a three humped structure. In other words, it
is possible to see the evidence for the systems division into three centers. As with
the 8Be case, it is possible to project out the “α-particles” by appealing to the point
symmetries of a three centered systems. If we employ the wave-functions containing
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Fig. 1.8 The density of the
three HO configurations
associated with placing
α-particles (pairs of protons
and neutrons) in the orbits in
Fig. 1.6 with degeneracy 2, at
deformations of 2:1, 3:1 and
4:1. The densities correspond
to the linear structures in the
2α, 3α and 4α systems 8Be,
12C and 16O, respectively. In
each case the presence of the
α-particles is clear

these symmetries we can equate the number of nodes in the multi-centered wave-
functions with those in the harmonic oscillator wave-functions under consideration;

ψ0,0 = 1

2
φα(−) + 1√

2
φα(0) + 1

2
φα(+) (1.4)

ψ0,1 = 1√
2
φα(−) − 1√

2
φα(+) (1.5)

ψ0,2 =−1

2
φα(−) + 1√

2
φα(0) − 1

2
φα(+). (1.6)

These can be solved for the three α-particle like wave-functions φα(−,0,+). The re-
sulting α-particle densities are shown in Figs. 1.7 and 1.8. The greater overlap of
the “α-particles” means that the central α-particle has additional higher order com-
ponents (quantified in [9]).

Such an analysis may be performed universally across the deformed harmonic
oscillator level scheme where ever shell structures arise and similar conclusions
emerge; namely 2-fold clustering at a deformation at 2:1 and 3 at 3:1, etc. What is
evident is that the cluster symmetries which are found in the HO are present both
in degeneracies and densities. Figure 1.8 shows these symmetries for the first α-
particle states appearing at deformations of 2:1, 3:1 and 4:1. Given the influence of
the harmonic oscillator on more sophisticated nuclear models these cluster symme-
tries might be expected to be pervasive. The competition between the mean-field and
clustering degrees of freedom is of great interest if the tendency of nuclei to fall ei-
ther a shell-model or cluster-like description is to be probed. Itagaki and co-workers
have recently explored this partition for a range of nuclei, e.g. Refs. [13–15].

Although more sophisticated models allow a more realistic description of the
nucleus to be arrived at, the ideas developed here remain the leading order terms in
our understanding of these nuclear states.

An example of this latter point may be found in a variety of calculations for 24Mg.
Figure 1.9 shows a compilation of calculations for 24Mg. The central panel shows a
Nilsson Strutinsky (NS) potential energy surface which is a macro-microscopic cal-
culation which reveals a series of minima in the surface associated with meta-stable
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Fig. 1.9 Comparison of a
range of calculations of
24Mg. The central panel
shows a Nilsson Strutinsky
calculation for the potential
energy surface, the
calculations around the
outside show densities
predicted by the Alpha
Cluster Model (ACM),
Hartree-Fock (HF) and
Harmonic Oscillator (HO)

configurations. These may be linked directly with the appearance of shell struc-
tures in the deformed HO and also with Alpha Cluster Model (ACM) calculations
in which the 24Mg nucleus is described in terms of geometric arrangements of 6
α-particles—there is a one-to-one mapping between minima in the potential energy
surface and the configurations found in the Alpha Cluster Model. In addition the
densities for two structures found in Hartree-Fock (HF) calculations are shown—
which bear a close resemblance to the structures found in the ACM. Finally, it is
possible to extract from the NS calculations the underlying single-particle config-
uration and then this may be used to calculate the densities one would expect in
the case of the harmonic oscillator (HO). Remarkably, these HO densities exhibit
symmetries, or equivalently patterns, which are very strongly allied to those of the
ACM. In other words, the symmetries that are associated with the arrangements of
the α-particle clusters are pervasive in the mean-field type models. Thus, even if the
α-particles themselves are not explicitly present within the nucleus their geometrical
symmetries leave an imprint.

It should be noted that in the case of deformed states discussed here there exist
two reference frames. The first is the intrinsic frame in which the coordinate sys-
tem may be aligned with the deformation axis. In this case angular momentum of
individual nucleons is not a good quantum number, only its projection onto the de-
formation axis. The second frame is the laboratory frame, which is the reference
frame of the shell model—here angular momentum is a good quantum number. In
calculations such as Hartree-Fock (HF) or Hartee-Fock-Bogoliubov (HFB), the lat-
ter including pairing, it is necessary to project out from the intrinsic states, states of
good angular momentum (projection after variation). In the HF case this projection
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is performed using the Peierls-Yoccoz procedure [16] and for the more complex
case a technique introduced by Blatt [17]. The majority of the cluster structures pre-
sented in the present review correspond to intrinsic states. It is of course within this
framework in which collective rotational energies have a natural description. In the
case of light nuclei in which SU(3) symmetry is respected it is often possible to de-
duce the relationship between the intrinsic and laboratory descriptions, i.e. the shell
model limit corresponding to various cluster structures [10].

1.4 More Sophisticated Models of Clustering

The deformed harmonic oscillator provides a very good basis for distilling the un-
derlying behavior of light nuclei, but is schematic. If one is to make progress towards
a more detailed understanding and the ability to reproduce experimental observables
such as transition rates, radii and energies then models of greater sophistication
are required. Historically many models have taken as a starting point an implicit
assumption of the existence of clustering and developing an interaction between
α-particles. In more recent times it has been realized that the α-particles within
the nucleus cannot be considered to be truly inert, but that interactions will distort,
polarize and modify the internal structure and that the real degrees of freedom are
those of the nucleons. This section explores some of the developments of models
and their merits.

1.4.1 Bloch-Brink Alpha Cluster Model (ACM)

The Alpha Cluster Model was first conceived of by Margenau [18] and then devel-
oped by Brink [19] drawing on the work of Bloch. Within the nuclear shell model
the 4He nucleus is constructed from 2p+ 2n all within the 0s1/2 orbital. The princi-
ple construction of the alpha particle model is to build on this idea and that quartets
are produced from pairs of protons and neutrons which are coupled to a total angular
momentum of zero, i.e. they may be represented by a relative 0s-state. A collection
of such quartet states may be modeled within the harmonic oscillator framework
using

φi(r)=
√

1

b3π3/2
exp

[−(r−Ri )2

2b2

]
. (1.7)

Here Ri is the vector describing the location of the ith quartet, and b = (�/mω)1/2
is a scale parameter which determines the size of the α-particle. The overall wave-
function of the system formed from the collection of α-particles must then be anti-
symmetrized in recognition that the true degrees of freedom are fermionic. Corre-
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Fig. 1.10 Alpha Cluster Model (ACM) calculation for 2D structures in a range of light nuclei
from Ref. [23]. See original work for further details

spondingly, the Nα wave-function is then created using a Slater determinant

Φα(R1,R2, . . . ,RN)=KA
N∏
i=1

φi(Ri ) (1.8)

A
∏N
i=1 φi(Ri ) being the Slater determinant wave-function (A is the antisym-

metrization operator accounting for the Pauli Exclusion Principle) and K a normal-
isation constant. The antisymmetrizer recognizes that the wave-function is actually
composed of the fermionic degrees of freedom, albeit the femions are embedded in
the clusters. At short distances this will serve to break the α-particles. The Hamil-
tonian describing the total energy of the Nα-system is

H =
A∑
i=1

Ti + 1

2

∑
i �=j

[
v(ri − rj )+ vc(ri − rj )

]− Tc.m. (1.9)

Tc.m. is the center-of-mass energy and the α–α interactions are governed by the ef-
fective nucleon-nucleon potential v(ri − rj ) and Coulomb interaction vc(ri − rj ).
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The optimal arrangement of the α-particles is arrived at variationally, where the
parameters which are optimised are the locations and size of the α-particles.
This model has been applied extensively to light cluster systems by for example
Brink [19], to the nucleus 16O [20], a series of rather comprehensive set of calcula-
tions of the structure of 24Mg by Marsh and Rae [21] (Fig. 1.9), linear arrangements
of α-particles by Merchant [22] and finally a series of wide ranging calculations
by Zhang et al. [23, 24], some of which are shown in Fig. 1.10. As was observed
in Fig. 1.10, where the clusters were constrained to lie within a plane, many of the
cluster structures are crystalline in nature.

As pointed out earlier there is a very strong mapping between the spatial sym-
metries found in these calculations and those which may be found in the densities
associated with the deformed harmonic oscillator. In fact it is possible to deduce,
in the limit that the separation of the α-particles tends to zero, the correspond-
ing harmonic oscillator configurations. It is these oscillator configurations that then
produce densities which emulate the patterns that are found in the Alpha Cluster
Model.

1.4.2 Condensates and the THSR Wave-Function

An intriguing possibility that the Alpha Cluster Model raises is that there may be
a class of states in nuclei in which the separation of the α-particles is such that the
internal structure of the α-particle is no longer so important. The conditions nec-
essary to achieve this require that the nuclear radius is sufficiently large. Such a
condition may be achieved close to the α-decay threshold, where in a state which is
only weakly bound an α-particle may significantly tunnel into the barrier increasing
the nuclear volume. Perhaps the best candidate for such behaviour is the 7.65 MeV,
0+, Hoyle-state in 12C. From electron inelastic scattering measurements it is un-
derstood that the volume associated with the Hoyle state is some 3 to 4 times that
of the ground-state. A further possibility then arises; if the state may be described
by a collection of identical bosons is it possible for them to adopt bosonic sym-
metries and behave as an atomic Bose-Einstein condensate? In order to describe
such a possibility, the Bloch-Brink wave-function (Sect. 1.4.1) has been adapted by
Tohsaki, Horiuchi, Schuck and Röpke (THSR) to reflect the possible character of
the state [25–27]. The condensed wave-function has the form

〈r1, . . . , rN |Φnα〉
=A

[
φα(r1, r2, r3, r4)φα(r5, r6, r7, r8)φα(rN−3, . . . , rN)

]
(1.10)

here the construction is for N nucleons grouped into quartets described by φα . The
wave-function of the α-particle is given by

φα(r1, r2, r3, r4)= e−R2/B2
φ(r1 − r2, r1 − r3, . . .) (1.11)
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Fig. 1.11 The calculated
inelastic form factor for
electron inelastic scattering
from the 0+ ground state to
the 0+2 excited state [29],
compared with the
experimental data
from [30–32]

where [R = r1 + r2 + r3 + r4]/4 is the c.o.m. coordinate of one α-particle and
φ(r1 − r2, r1 − r3, . . . .) is a Gaussian wave-function

φ(r1 − r2, r1 − r3, . . .)= exp
(−[r1 − r2, r1 − r3, . . .]2/b2) (1.12)

as in the ACM b is the size parameter of the free α-particle and B (� b) is the
parameter which describes the size of the common Gaussian distribution of the three
α-particles. In the limit that B→∞ then the antisymmetrization operator A ceases
to be important and the wave-function (1.10) becomes the product of Gaussians, i.e.
a wave-function describing a free α-particle gas [28]. The important feature is that
in the limit that the volume becomes small the antisymmetrization takes over and
the wave-function respects the internal fermionic degrees of freedom. In this way
the wave-function is very similar to that of the Alpha Cluster Model, but possesses
an additional variational degree of freedom.

One of the main successes of this model is that it manages to reproduce the form
factor for the electron elastic excitation to the Hoyle-state without any arbitrary nor-
malisation [29] (see Fig. 1.11). There is remarkable agreement with the experimen-
tal data, which would confirm the nature of the Hoyle-state as being both spatially
extended and strongly influenced by an internal α-particle structure.

1.4.3 Microscopic Cluster Models

The Alpha Cluster Model produces a rather good picture of the nature of states
within A = 4n nuclei which condense out into collections of α-particles. How-
ever, although it antisymmetrizes the α-particles, their individual constituents are
ignored, i.e. the internal excitations of the cluster. For clusters such as α-particles
this may be a good approximation, but for other clusters this is not the case. Such
shortcomings are addressed within the generator coordinate method (GCM) (also
within the resonating group method (RGM)) [33–42]. Moreover, this approach per-
mits reactions between the asymptotic clusters to be studied, as has been performed
extensively by Baye and Descouvement (e.g. Refs. [43–46]).
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Fig. 1.12 The GCM
calculations for 9Be showing
the three rotational bands
associated with the
Kπ = 3/2−
(π -configuration),
Kπ = 1/2+ (σ -configuration)
and Kπ = 1/2− bands, from
Ref. [47]. The experimental
data are the filled circles and
the squares and circles are the
calculations for two different
types of interaction

Within the RGM formalism the wave-function describing the A nucleons, sepa-
rated into two clusters with A1 and A2 constituents, may be written as,

Ψ (r1, r2, . . . , rA)= F(Rcm)Â
{
φ1(ξ1)φ2(ξ2)g(R)

}
(1.13)

here F(Rcm) describes the motion of the center of mass of the nucleus, φi represent
antisymmetrized internal states of the two clusters (whose internal coordinates are
described by ξi ), g(R) is a function of the relative motion of the two clusters (so
that the relative coordinate R is given by (1/A1)

∑A1
i=1 ri − (1/A2)

∑A2
j=1 rj ) and

Â is the antisymmetrization operator which exchanges nucleons between the two
clusters. The great advantage of this approach is the fact that the constituents of
the clusters are fully antisymmetrized and that the center-of-mass of the system is
correctly treated so that the quantum numbers produced have a realistic meaning
in terms of the asymptotic fragments. The above corresponds to the single-channel
form of the RGM, if excitations of the cluster cores are required then so is a multi-
channel approach.

An impressive demonstration of the GCM can be found in the calculations of
the structure of the microscopic structure of 9,10,11Be isotopes using 2α +Xn con-
figurations by Descouvement [47]. The calculations for 9Be reproduce almost per-



16 M. Freer

fectly the rotational bands in this system. In particular, the Coriolis decoupling of
the Kπ = 1/2+ band is found (see Fig. 1.12). These GCM calculations reproduce
the characteristics of the molecular states in the nuclei 9,10,11Be. In this instance the
neutrons reside in molecular orbits whereby they are exchanged between the two
α-particle cores—π -orbit for the ground state band and σ for the excited states (see
Sect. 1.7).

In recognition of this molecular behaviour, some approaches employ such or-
bitals explicitly in defining the basis states for the calculation of the structural prop-
erties. For example, this molecular-orbit (MO) approach has been used to calculate
the properties of the neutron-rich beryllium [48–50] and carbon isotopes [51]. Here
the molecular orbits are formed from linear combinations of p-orbitals based around
α-particle centers. The MO framework also allows collisions between two nuclei to
be considered, for example in the generalized two-center cluster model (GTCM),
using a basis function of the form

ΦJ
πK
m,n = P̂ JπK ·A {

ψL(α)ψR(α)φ(m)φ(n)
}
, (1.14)

the formation of resonances in 10Be from 6He+4He has recently been consid-
ered [52]. Here ψL,R(α) is the wave-function of the left/right (L/R) α-particle and
φ(m,n) are the molecular wave-functions of the neutrons. P̂ J

π

K and A are the
parity projection and antisymmetrisation operators ensuring states have good an-
gular momentum (J ), angular momentum projection (K) and parity (π ). Rather
interestingly, these calculations indicate that in the inelastic scattering reaction
4He+ 6He ⇒ 4He+ 6He(2+) an avoided crossing which takes place between differ-
ent molecular configurations that a Landau-Zener type transition [53, 54] is respon-
sible for the inelastic scattering in the L= 1 channel. In other words the formation
of molecular configurations in the scattering process can have a marked impact on
the elastic and inelastic scattering processes.

1.4.4 Antisymmetrised Molecular Dynamics (AMD) and Fermionic
Molecular Dynamics (FMD)

The AMD approach, which has been comprehensively reviewed recently by
Kanada-En’yo and Horriuchi [55], has many important advantages over micro-
scopic cluster models, but the most significant is that there are no assumptions made
about the cluster or the relative coordinates between clusters. The model is one in
which the nucleonic degrees of freedom are explicitly included and the A-nucleon
wave-function is then antisymmetrised again via a Slater determinant:

ΦAMD(Z)= 1√
A!A {ϕ1, ϕ2, . . . , ϕA}. (1.15)

In this way the model resembles the Bloch-Brink cluster model, but contains as
degrees of freedom the nucleons and releases the constraint that α-particles be pre-
formed. Consequently, clusters emerge without being imposed. The ϕi are Gaussian
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Fig. 1.13 The density distributions of the ground-states of the beryllium isotopes calculated within
the framework of the AMD. The first column shows the total nucleon density (ρ) and the middle
and right-hand columns the proton (ρp) and neutron densities (ρn). From [55]

wave-packets in space, φXi (rj ) ∝ exp(−ν(rj − Xi/
√
ν)2), but also possess spin

(χi ) and isospin character (τi ): ϕi = φXi χiτi . The wave-function is parameterized
in terms of a complex set of variables Z describing the spin and geometry of the
wave-function. The energy of the system is computed, variationally, utilizing an
effective nucleon-nucleon interaction (see Ref. [55] for more details). The flexibil-
ity of this approach allows a suitable description of cluster and shell-model type
systems, alike, and the structure emerges naturally from the details of the nucleon-
nucleon interaction under the guidance of the Pauli Exclusion Principle.

An example of the appearance of the precipitation of clusters from the nucleon-
nucleon interaction within the framework of the AMD is shown in Fig. 1.13 for
the beryllium isotopes 6−14Be. All isotopes possess a proton distribution which is
prolate and clustered. The role of the neutrons is clear. When the neutron number
is the same as that of the protons (8Be) the separation of the proton-cores is maxi-
mal (maximum clustering), whereas neutrons in more spherical distributions cause
the separation of the proton centers to be reduced. This model has been widely ap-
plied, but with a particular focus on the Li, Be, B and C isotopes, see Ref. [55] and
references therein. In general the model reproduces well both experimental bind-
ing energies, transition rates, radii and moments. Figure 1.14 shows some examples
of the rather close agreement between the AMD calculations and the experimental
electric quadrupole moments and electromagnetic transition rates.
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Fig. 1.14 (Left) Electric quadrupole moments for Li, Be and B isotopes. The squares are exper-
imental data and other symbols are the AMD calculations with slightly different interactions or
constructions. (Right) E2 transition strengths for Li, Be, B and C isotopes. The squares are the
experimental data points, the other symbols are the AMD calculations. See Ref. [55] for further
details

An alternate approach to AMD which contains an additional degree of freedom,
namely each nucleon is represented by two Gaussian wave-packets, is fermionic
molecular dynamics (FMD) [56]. Moreover, the interaction employed (Unitary Cor-
relation Operator Method—UCOM) includes a tensor component. The features of
these calculations essentially coincide with those of the AMD, but the variable
Gaussian width should allow, in principle, a better description of shell-model like
states and should potentially provide a better description of weakly bound states.
The recent calculations for the structure of the 7.65 MeV state in 12C are of partic-
ular note [57].

1.4.5 Ab Initio Type Models

Ultimately, it is important to be able to push beyond models which either employ
assumptions of preformed clusters or effective interactions. The Green’s Function
Monte Carlo (GFMC) method, described earlier, uses realistic two-body interactions
with a parameterization of the 3-body force. Not only does this method reproduce
the properties of light nuclei up to A= 12 rather precisely, but, as shown in Fig. 1.2,
also indicates the emergence of cluster like structures in nuclei such as 8Be [1].

Another approach which attempts to extend beyond the shell model is the no-
core shell model (NCSM) in which realistic interactions are used but with a set
of basis states which are harmonic oscillator states [58]. This approach provides an
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analytic basis for the construction of the many-body Slater determinants. The down-
side is that HO wave-functions do not have the appropriate asymptotic behavior (as
a function of r), which means that they tend not to be a good description of weakly
bound systems, and also all states of the system end up being effectively bound
due to the nature of the potential. As its name suggests the interaction between all
nucleons is taken into account (rather than the valence nucleons beyond the closed
shell) and it may use a variety of interactions including those used in the GFMC
approach (the Argonne potentials) and those from Effective Field Theory (EFT).

In this latter case the interaction is grown from QCD by including various types
of exchange processes which in leading order include one pion exchange terms.
Higher order corrections include more complex processes for example next to lead-
ing order (NLO) includes 2 pion exchange and terms which correspond to pions
being radiated and absorbed by a single nucleon which interacts with a second via
pion exchange (called renormalisation of 1 pion exchange). Current models extend
to N3LO (next to, next to, next to leading order) which amongst other components
would include 3 pion exchange components [59, 60] and even N4LO.

Calculations of the states of 12C using the no-core shell model [61, 62] struggle
to reproduce the excitation of the 7.65 MeV, 0+, Hoyle state without an extension
of the basis to include excitations to HO levels at very high energies (large �ω). The
Hoyle-state has long been known to possess a cluster-like structure and the failure
of the NCSM to capture the detail of this state without a significant expansion of the
basis is thus not surprising. In fact, this may be taken as a signature of clusterization.

Finally, a rather promising development is the use of chiral EFT interactions in
lattice based calculations. A series of calculations of the structure of the states in
12C, including the Hoyle-state, have been performed. These point to both clusteri-
zation and a rather different structure of the 12C ground and excited states [63–65].
The lattice spacing used in these calculations remains rather coarse, but further op-
timization has the potential for providing great insight into the structure of light
clustered systems and their reactions.

1.5 Experimental Examples of Clustering

1.5.1 The Example 8Be

The ground-state of 8Be is unbound to 2α decay by 92 keV, and has a lifetime of
∼10−16s. It has a first excited 2+ state at 3.03 MeV with a width of 1.51 MeV and
a 4+ state at 11.35 MeV with a width of 3.5 MeV. These three states have an energy
separation which is consistent with a rotational behaviour given by �

2J (J +1)/2I ,
where I is the moment of inertia. The value for the moment of inertia that one
extracts is consistent with the picture of two touching α-particles, an essentially
super-deformed nucleus. Indeed the Green’s Function Monte Carlo calculations [1]
reproduce the spectrum of excited states which reinforces this interpretation. There
appears to be little doubt that clusterisation is a dominant factor in the structure of
the 8Be nucleus.
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Fig. 1.15 Spectrum of the
energy levels of an equilateral
triangle configuration. The
bands are labeled by
(v1;vl2) [66]

1.5.2 The Structure of 12C

If the structure of the 12C ground state is influenced by clustering or the symmetries
thereof, then the system can be constructed from a variety of geometric arrange-
ments of three α-particles. It might be expected that the compact equilateral-triangle
arrangement is the lowest energy configuration. Such an arrangement possesses a
D3h point group symmetry. The corresponding rotational and vibrational spectrum
is described by a form [66]

E =E0 +Av1 +Bv2 +CL(L+ 1)+D(K ± 2l)2 (1.16)

where v1,2 are vibrational quantum numbers, and v2 is doubly degenerate; l =
v2, v2 − 2, . . . ,1 or 0, L is angular momentum, M its projection on a laboratory
fixed axis and K a body-fixed axis [66]. A,B,C and D are adjustable parame-
ters. The spectrum of states predicted by the choice A= 7.0, B = 9.0, C = 0.8 and
D = 0.0 MeV is shown in Fig. 1.15.

The ground state band, (v1;vl2)= (0,00), contains no vibrational modes and co-
incides well with the observed experimental spectrum. Here the states correspond
to different values of K (K = 3n, n= 0,1,2 . . .) and L. For K = 0, L= 0,2,4 etc.,
which is a rotation of the plane of the triangle about a line of symmetry, whereas for
K > 0 L=K,K + 1,K + 2, . . . . In the present case, K = 0 or 3 is plotted with the
parity being given by (−1)K . The K = 0 states coincide well with the well-known
0+ (ground-state), 2+ (4.4 MeV) and 4+ (14.1 MeV) states. The K = 3 states cor-
respond to a rotation about an axis which passes through the center of the triangle,
with each of the α-particles carrying one unit of angular momentum. The first state
has spin and parity 3− and coincides with the 9.6 MeV, 3−, excited state. The next
such state would beK = 6, Jπ = 6+. A prediction of this model is that there should
be a 4− state almost degenerate with the 4+ state. A recent measurement involving
studies of the α-decay correlations indicated that the 13.35 MeV unnatural-parity
state possessed Jπ = 4− [67]. The close degeneracy with the 14.1 MeV 4+ state
would appear to confirm theD3h symmetry. The rotational properties of these states
are given by

EJ,K = �
2J (J + 1)

2IBe
− �

2K2

4IBe
(1.17)
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where IBe is the moment of inertia corresponding to two touching α-particles which
can be determined from the 8Be ground-state rotational band [3].

Historically, one of the pre-eminent tests of our understanding of the structure of
light nuclei lies in the nature of the second excited state in 12C. This system resides
at the limits of many of the ab-initio approaches. This state has character Jπ =
0+ and lies at Ex = 7.65 MeV. It is known as the Hoyle-state as it was predicted
by Fred Hoyle [68, 69] as a solution to the discrepancy between the observed and
predicted abundance of 12C. 12C is synthesized in the triple-α process, whereby
the two α-particles briefly fuse to make 8Be and at sufficient densities there is a
finite probability of capturing a third α-particle to form 12C. The 7.65 MeV state
serves as a doorway resonance, substantially enhancing the reaction-rate. Without
this resonance, or even if its energy were slightly different, the abundance of carbon
would be dramatically reduced as would that of carbon based life-forms.

In the description illustrated in Fig. 1.15 the 0+ state at 7.65 MeV corresponds
to a vibrational mode (v1 = 1). The coupling of rotational modes would then pro-
duce a corresponding 2+ state at 4.4 MeV above 7.65 MeV, i.e. 12.05 MeV. There
is no known 2+ state at this energy, pointing to the more complex structure of this
state. If the 7.65 MeV state in 12C has a structure similar to that of the ground-state
then a 2+ state close to 12 MeV is expected. The closest state which has been re-
ported with these characteristics is at 11.16 MeV [70]. This state was observed in the
11B(3He, d)12C reaction, but has not been observed in measurements subsequently.
A re-measurement of this reaction using the K600 spectrometer at iThemba in South
Africa demonstrates that the earlier observation of a state at 11.16 MeV was an ex-
perimental artifact and no such state exists [71]. This introduces an interesting set
of possibilities which lie at the heart of uncovering the structure of the Hoyle-state.
If the Hoyle-state is more deformed than the ground-state, and the system behaves
in a rotational fashion, then the 2+ state would be lower in energy and an alterna-
tive possibility is that the Hoyle-state possesses no collective excitations. It has been
suggested that due to the close proximity of the Hoyle-state close to the 3α-decay
threshold, bound only by the presence of the Coulomb barrier, that the system ob-
tains a bosonic rather than fermionic identity and that the α-particle bosons behave
like a weakly interacting bosonic gas or even a bosonic condensate [25]. The reso-
lution of the structure may follow from the identification of the 2+ excitation—or
otherwise.

Recent studies of the 12C(α,α′) [72–74] and 12C(p,p′) [75, 76] reactions indi-
cate the presence of a 2+ state close to 9.6–9.7 MeV with a width of 0.5 to 1 MeV.
The state is only weakly populated in these reactions, presumably due to its un-
derlying cluster structure, and is broad. Consequently, its distinction from other
broad-states and dominant collective excitations (e.g. the 9.6 MeV, 3-) makes its un-
ambiguous identification challenging. Further, and perhaps definitive, evidence for
such an excitation comes from measurements of the 12C(γ,3α) reaction performed
at the HIGS facility, TUNL [77] in the US. Here a measurable cross section for this
process was observed in the same region of 9–10 MeV which cannot be attributed to
known states in this region. Furthermore, the angular distributions of the α-particles
are consistent with an L = 2 pattern, indicating a dominant 2+ component. Based



22 M. Freer

Fig. 1.16 Different
arrangements of α-particles.
The closest possibility fitting
the experimental data is the
triangular arrangement

on a rather simple description of this state in terms of three α-particles with radii
given by the experimental charge radius (see Fig. 1.16 for possible arrangements),
it is possible to use the 2 MeV separation between the Hoyle-state and the proposed
2+ excitation to draw some conclusions as to the arrangements of the clusters. This
would indicate that rather than a linear arrangement of the three clusters, a more ap-
propriate description would be a loose arrangement of the α-particles in something
approaching a triangular structure.

A natural extension of such a conclusion is that there should also be a col-
lective 4+ state. Using the simple J (J + 1) scaling, a 4+ excitation close to
Ex(

12C)= 14 MeV would be expected. Recent measurements of the two reactions
9Be(α,3α)n and 12C(α,3α)4He have been performed [78]. These measurements
indicate a candidate state close to 13.3 MeV with a width estimated to be 1.7 MeV.
It is believed that this is not a contaminant and is observed with similar properties
in all spectra. Angular correlation measurements made using the 12C target are not
definitive, but indicate a 4+ assignment.

1.6 Experimental Techniques—Break-up and Resonant
Scattering Reactions

A determination of the structure of light nuclei above the particle decay threshold,
where gamma-decay ceases to be dominant, is challenging. In order to characterize
the nature of excited states, the energies, total and partial widths and spins and par-
ities should be determined. There are few experimental techniques which permit all
of these quantities to be determined simultaneously.

1.6.1 Resonant Scattering

One approach which recently has found greater favor is thick target resonant scat-
tering [79]. Here a beam passes through a thick target loosing energy as it traverses
the medium. By far the majority of the interactions are with the atomic electrons
slowing the beam, however occasionally a nuclear interaction takes place. The cross
section for resonant capture reaches hundreds of millibarns. The resonance in the
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Fig. 1.17 Resonant
scattering using a thick
helium target

target-beam composite system then can decay either back into the entrance channel
or into other final states. The fact that the beam energy is continuously varying in
the medium means that the center-of-mass energy is scanned—this results in a tech-
nique which is considerably more efficient than the traditional excitation function
measurements, where the beam energy must be re-tuned for each data point. For
elastic resonant scattering involving a projectile and an α-particle target the cross
section is given by

σ(E)= πλ̄2 2J + 1

2J1 + 1

Γ 2
α

(E −Er)2 + (Γ/2)2 (1.18)

where J is the spin of the resonance, J1 is the spin of the projectile, Er the energy of
the resonance and Γ and Γα the total and α-partial widths, respectively. The cross
section thus scales linearly with J and quadratically with Γα—the greater the degree
of clusterization the larger the partial width and the larger the cross section. Reso-
nant elastic scattering from an α-particle target is thus ideally matched to the study
of cluster states. For inverse kinematics, where the beam is heavier than the target,
the resolution with which it is possible to reconstruct excited states can exceed the
energy resolution of the detection system.

The experimental approach is illustrated in Fig. 1.17. The beam, of energy typi-
cally a few MeV/u, passes through a window, which is typically Havar or Mylar of
thickness 5 µm, to contain the helium gas with pressures up to about 1 atmosphere.
The beam loses energy and undergoes energy-loss straggling as it passes through
the window and the target gas. This leads to a loss in resolution. As the beam tra-
verses the gas volume it again decelerates until finally it is stopped. The range of
the beam is adjusted via the variation of the gas pressure, such that the beam stops
immediately in front of the detectors. Of course if the range exceeds the distance
to the detectors and the beam is sufficiently intense the detectors will be destroyed.
Any interaction with an α-particle along the path of the beam has the potential to
result in elastic scattering—either resonant or non-resonant. These two processes
will interfere with each other. For center-of-mass angles close to 180 degrees the
α-particles will be emitted in the same direction as the beam and since typically the
beam has a mass and charge in excess of α-particles, the scattered α-particles have
a lower energy loss in the gas and thus can reach the detectors. The main drawback
for this approach arises when a helium gas target is extended and in this instance the
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precise location of the interaction cannot be determined. This means that there is an
ambiguity in the emission angle when the α-particle is detected in the silicon array.
Only at zero degrees (the beam direction) does this problem vanish. Here it is possi-
ble to establish the location of the interaction within the gas volume and thus correct
for the energy loss of the α-particle as it traversed the gas and hence the energy upon
emission. This then permits the excitation energy of the composite target+projectile
system to be established. For emission away from zero degrees the path length of the
beam and emitted α-particle through the gas is harder to establish—though it is pos-
sible to develop iterative techniques to address this. The excitation energy resolution
away from zero degrees tends to be correspondingly degraded.

The study of resonances in the 18O+ α system by Rogachev et al. [80] is shown
in Fig. 1.18. This shows the energy spin systematics of the resonances observed in
22Ne obtained using this technique [80]. The systematics of the energies in the bands
are compared with those for 20Ne and show a similar rotational trend, but for each
rotational level the states are split into two components. It is possible that the states
observed have a molecular structure in which two neutrons are exchanged between
α-particle and 16O cores.

1.6.2 Break-up Measurements

The utility of break-up reactions in the study of nuclear clustering has been reviewed
in Ref. [81]. In this approach, states above particle decay channels with a particular
type of cluster structure are observed to decay into the cluster components. The ar-
gument being, that if the states have large cluster widths then they are more likely
to decay in a manner respecting this structure and hence the break-up spectrum is
most strongly populated by cluster states. The reaction populating such states may
range from inelastic scattering to transfer. Figure 1.19 shows the sequence of states
populated in the 12C(24Mg, 12C+ 12C)12C inelastic scattering reaction. The exper-
imental technique employed is akin to invariant mass spectroscopy and has been
termed resonant particle spectroscopy. It involves the simultaneous detection of the
two decay products (in this case two 12C nuclei) using detectors which are capable
of measuring both the energy and emission angles of the particles. If the detection
system is capable of also determining the mass of the fragments then the momen-
tum of the two fragments may be established. Using the principles of conservation
of momentum it is possible to calculate the momentum of the 24Mg nucleus before
decay and hence its kinetic energy, E(24Mg). The excitation energy then follows

Ex =E
(12C1

)+E(12C1
)−E(24Mg

)−Qbu (1.19)

whereQbu is the breakup threshold, which in this instance is −13.93 MeV. Momen-
tum conservation also permits the energy of the recoil to be calculated and hence the
three-body reactionQ-value to be calculated. In this way it is also possible to select
events in which the decay proceeds only to the ground states of the three final-state
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Fig. 1.18 Excited states of
22Ne, populated in 18O+ α
scattering. The energy above
threshold is given as Ec.m..
Upper figure top panel:
excitation functions of
resonant elastic scattering at
different cm-angles as
indicated. Upper figure lower
panel: Details of the upper
part with enhanced regions,
showing the fits used to
determine the spin values as
indicated. Lower figure: plots
of the observed excitation
energies as function of spin
(J (J + 1)) for 22Ne
compared to corresponding
values of 20Ne, from
Ref. [80]

12C nuclei. This is important otherwise the excitation energy spectrum contains an
ambiguity corresponding to decays proceeding to the 12C first excited state (2+,
4.4 MeV).

A second advantage of being able to determine the fact that all three final state
12C nuclei were produced in their 0+ ground-states is that the technique of angular
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Fig. 1.19 States in 24Mg
decaying into two 12C nuclei
populated in the
12C(24Mg, 12C+ 12C)12C
inelastic scattering reaction.
The horizontal axis is the
excitation energy of the 24Mg
nucleus and the vertical axis
represents the counts per bin.
The inset shows the
energy-spin systematics of
the states which appear to
follow a rotational behaviour
consistent with a 12C+ 12C
cluster structure

correlations may then be utilized. If all initial and final state nuclei are spin zero,
then the mathematical form describing the angular distribution of the decay prod-
ucts is essentially that described by Legendre polynomials [82]. Given that there are
two center-of-mass frames, the first associated with the inelastic scattering of the
24Mg∗ nucleus and the second describing the decay of the 24Mg∗ nucleus into two
12C nuclei, there are two sets of angles and it is the correlation between these two
processes which reveals the spin of the decaying 24Mg∗ excited state. The angular
correlation technique in principle permits quasi model independent spin determina-
tions.

The breakup technique thus allows excitation energies and spins to be deter-
mined. However, it is often difficult to achieve excitation energy resolutions less
than 100 keV and hence measuring the natural widths of states is challenging and in
order to know the partial widths the excitation probability must also be determined
which is also challenging. In some instances this has been overcome for example
using a spectrometer to measure the recoil particle, e.g. [83], in order to determine
the nature of the excitation energy spectrum prior to decay.

1.7 Beyond α-Clusters—Valence Neutrons and Molecules

Alpha-conjugate nuclei are clearly a very small subset of all those which exist in
nature and in this instance that the clusterisation arises from the rather special prop-
erties that stem from the common orbitals in the mean-field limit. As has been ob-
served this gives rise to particular symmetries which pervade both the mean-field
and cluster model limits and may be interpreted as spatially localized clusters. When
one moves away from such even N , Z, N = Z nuclei then some of the energetic ad-
vantage associated with the α-particle are lost and the symmetries disturbed. The
important question is, does clustering vanish at this point or does it remain influen-
tial even at the drip-lines? As described earlier on, there is evidence of the impor-
tance of correlations, or clustering, even at the drip-lines. The properties of 6He may
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be traced both to the reliance of the α-particle and the effect of correlations between
the neutrons [84]—the removal of one of the neutrons leaves the unbound 5He. The
presence of the α-particle also affects the binding of the two neutrons; the di-neutron
is unbound. Understanding the behaviour of such finely balanced nuclei right at the
drip-lines can give a deep insight into the intricacies of the strong nuclear force. In
this instance it is the α-particle which forms part of the building block. Similarly the
nuclei 6,7Li possess α + d and α + t structures, respectively. The 6Li ground-state
spin of 1+ would correspond to the Jπ = 0+ α-particle with a deuteron (Jπ = 1+)
with a relative motion described by L= 0 (ignoring the small D-state component).

The first significant attempt to deal with the additional degrees of freedom that
valence nucleons bring to systems was that of Hafstad and Teller [3]. This semi-
nal piece of work set the ground rules for this field. These authors considered the
sequence of nuclei, 5He, 9Be, 13C and 17O. The binding energies of these 4n+ 1
nuclei (n= 1,2,3, . . .) depend on the α–α interaction energy, but also the character
of the valence neutrons. The binding energy of the 5He nucleus reflects the α–n in-
teraction, whereas the α+ n+ α nucleus 9Be whilst containing similar terms in the
Hamiltonian was recognised as having a contribution from an exchange interaction.
Here, the systems were described in terms of the covalent exchange of neutrons be-
tween the α-cores. Again the building blocks are the α-particles and the neutrons are
shared between the cores. This is highly reminiscent of the exchange of electrons in
covalently bound atomic molecules. For example, the H+

2 molecule is formed from
two protons with a covalently exchanged electron. The electrons reside in single
center s-orbitals and the covalent bond is formed from their linear combination:

ψ± = 1√
2
(ϕ1 ± ϕ2). (1.20)

This generates two molecular wave-functions, one with no intermediate node (bond-
ing) and a higher energy state with an internal node (anti-bonding). The develop-
ment of atomic orbitals from symmetry adapted linear combinations (SALCs), is
also widely used in molecular physics.

The exchange of neutrons between α-particle cores is a rather important concept
which allows a detailed understanding of the structure of the beryllium isotopes to
be developed [85–89]. The appearance of nuclear molecules is reviewed in [6]. The
nucleus 9Be demonstrates this beautiful piece of physics rather well. The N = Z
isotope 8Be is unstable against α-decay, held together only by the Coulomb barrier
for a period of ∼10−16 seconds. The only stable beryllium isotope is 9Be. The
additional neutron is exchanged between the cores just as electrons are exchanged
between atoms in covalent atomic molecules. Thus, such states have been coined
nuclear molecules. It is the delocalisation of the neutron which lowers its kinetic
energy giving an enhanced binding energy for the 9Be system compared to 8Be.
It is inferred from the neutron separation energy in 9Be that the magnitude of the
binding is approximately 1.6 MeV [86].

In the formation of such molecular states in the beryllium isotopes, the single-
center wave-functions are those that the neutrons occupy in 5,6He, i.e. p3/2. Thus,
one might expect the neutron to reside in covalent orbits, which are the analogues
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Fig. 1.20 Molecular orbitals associated with linear combinations of HO orbitals [n⊥, nz] = [1,0]
and [0,1] orbits, equivalent to p-states. Here the z-direction is aligned with the separation axis
of the two centers indicated by the black dots. (a) Shows the overlap of the two individual wave–
functions. Diagrams (b) and (c) are the result of forming linear combinations: (b) corresponds to
the binding π -state, and (c) to the anti-binding state. Diagram (d) shows the overlap of the two
(0,0,1) orbits, forming the σ -configurations, and (e) and (f) the two linear combinations

of those observed in carbon and oxygen molecules, namely σ and π -orbits, which
are formed in the exchange of p-electrons.

To illustrate this, the possible linear combinations of the equivalent HO orbitals
[n⊥, nz] = [1,0] and [0,1] are shown in Fig. 1.20. Note that there are two possible
orientations of the dumbbell-like orbitals—either parallel or perpendicular to the
axis separating the α-particles (though phases may vary). The linear combination
shown in part (b) corresponds to the π -type structure for the valence neutron, and
(e) to the σ -orbital. The notation σ and π corresponds to the projection of the angu-
lar momentum of the molecular orbit onto the symmetry axis of the molecule. If the
linear combination of the p-orbits is considered, then for the orientation shown in
Fig. 1.20a, this would correspond to l = 1 components along the separation axis and
hence π -type orbits. For the alternate case, Fig. 1.20d, the projection of the orbital
angular momentum of the two p-orbitals is perpendicular to the separation axis and
thus the σ association (no angular momentum).

Figure 1.21 shows the energy evolution of the energy levels of the two-center
shell model, where the Schrödinger equation is solved for two shell model poten-
tials as a function of their separation—from infinite separation to zero. This model
is one which is appropriate for the description of the merger of two nuclei (with



1 Clustering in Light Nuclei; from the Stable to the Exotic 29

Fig. 1.21 The energy levels
of the two center shell model
from [87, 88]. The separation
of the two potentials is
defined in terms of the
distance r . The present
calculation corresponds to the
energy-levels associated with
the fusion of two 4He nuclei.
The separation at which the
interaction potential reaches a
minimum is marked,
Rmin—this would correspond
to the 8Be ground state

zero impact parameter forming a composite system) and traces the evolution of
the initially degenerate energy levels in the two separate potentials to those of the
merged system. As the separation varies, then the energy levels are essentially those
of the prolate deformed nucleus and will strongly overlap with those found in the
deformed shell, Nilsson, model (as illustrated in Fig. 1.22). The separation of the
two potentials appropriate for two α-particles in the ground state of 8Be is marked
Rmin ∼ 3.5 fm in Fig. 1.21—the point at which the α–α potential attains its min-
imum. At this separation the two lowest energy orbits available for the neutron to
follow are marked π3/2− and σ1/2+. In fact the two levels are almost degenerate.
These two orbits are analogues of the Nilsson orbitals from the 1p3/2 and 1d5/2

levels, with projections of the total angular momentum Kπ = 3/2− and 1/2+, re-
spectively.

A natural conclusion is that if such a description of 9Be is correct then the ground
state of 9Be should be the head of a rotational band associated with Kπ = 3/2−.
There should also be a second band linked with a Kπ = 1/2+ configuration and
both bands should have a similar rotational gradient as that of the 8Be ground state.
In fact one would expect theKπ = 1/2+ band to be slightly more deformed than the
ground state band as the valence neutron in the σ -configuration intercedes between
the two α-particles enhancing the deformation. Figure 1.23 shows the experimental
situation for the nuclei 8Be, 9Be and 10Be. The data indeed confirms the predic-
tion; aside from the fact that the K = 1/2 band possesses Coriolis decoupling. For
such bands, an additional term is introduced with an associated Coriolis decoupling
parameter a,

EJ = �
2

2I

[
J (J + 1)+ (−)J+1/2a(J + 1/2)

]
(1.21)
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Fig. 1.22 The Nilsson single-particle energy levels. The parameter ε corresponds to the deforma-
tion of the potential. The magic numbers are labelled as are some of the key Nilsson orbits [90]

Fig. 1.23 Rotational bands of 8Be, 9Be (left side) and 10Be (right side). The excitation energies
are plotted as a function of angular momentum J (J + 1). The Coriolis decoupling parameter, a,
for the K = 1/2 band is indicated. From Ref. [91]

I being the moment of inertia. It should be noted that the experimental moment
of inertia for the K = 1/2 band is indeed larger than for the K = 3/2 ground-state
band (as indicated in the left hand part of the figure).

1.7.1 The Neutron-Rich Nucleus 10Be

The addition of two neutrons to the two α-particles results in the formation of 10Be.
The AMD calculations for the nucleus are shown in Fig. 1.24 [92]. The contour
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Fig. 1.24 Left side: Experimental level scheme of 10Be, and, right side: that calculated with the
spin parity projected AMD model [92]. The density plots of the intrinsic states are shown in special
panels: for protons on the left side of each plot and for neutrons on the right side, respectively.
The proton densities represent the positions of the α-particles. The neutron densities show for the
ground state a density distribution characteristic of π -binding. The higher lying 0+2 state is well
reproduced with a larger α–α distance (seen by the density of protons) as compared to the ground
state, it shows the σ 2 configuration for the neutrons. The density of the 1− state shows a mixture
of σ–π orbitals with a distorted neutron density

plots show the density of the protons (left side) and neutrons (right side). In the case
of the protons the α-particle structure can be clearly be seen. In the first 0+ state
(ground-state) the separation of the “α-particles” is smaller than that corresponding
to the next 0+ state (0+2 ). In the molecular picture this can be understood in terms of
the orbitals of the valence neutrons. In the ground-state the neutrons occupy the π -
orbital, forming a bridge between the two centers, whilst for the second 0+ state the
neutrons intercede between the two α-particles in a σ -orbital. The effect of the Pauli
Exclusion Principle is to make it energetically unfavorable for the valence neutrons
and those in the α-particle to overlap and hence the two α-particles are forced apart
in order to minimize the energy of the configuration.

The 0+2 state should thus be the more deformed of the two—in fact could be
the most deformed nuclear state yet seen in nature—experimentally it is found at
6.1793 MeV. The gamma-decay of this state is suppressed (it possesses a lifetime
of the order of 1 ps)—an isomeric behavior that may be understood in terms of the
small overlap of its structure and that of the more compact ground state. The excited
state at 7.542 MeV (2+) is believed the first rotational member of the associated
band. This state lies very close to the α-decay threshold (7.409 MeV) and thus its
decay to this channel is strongly suppressed by the Coulomb and (L= 2) centrifugal
barriers. Nevertheless, the α-decay has been found to correspond to a very large
reduced width [93], representative of the large degree of clusterisation associated
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with the state. This is however a single, and very challenging, measurement and
needs confirming.

The 4+ member of the same band would lie in the region of 10–11 MeV. There
are a number of possible states which could correspond to the molecular band;
10.15 MeV and 10.57 MeV. The spin of the latter state is unknown, whereas the
former has been associated with spins 3− [94] and 4+ [95]. The latter assignment
was also found in a measurement of the resonant scattering of 6He+4He [96]. Re-
cent re-measurements of resonant scattering verify the 4+ assignment [97]. The
energy and width of the state are consistent with the interpretation of an extremely
deformed rotational band with a well-developed cluster structure.

Determination of the structure the ground-state of 10Be cannot be readily made
using particle spectroscopy techniques. A recent set of measurements of the electro-
magnetic transition strengths, B(E2), between the 2+ and 0+ ground-state for 10Be
and 10C, together with the isobaric analogue state in 10B [98, 99] (made with an un-
precedented precision) provide a significant benchmark against which the character
of the state may be fixed.

The observations made for the nuclei 9Be and 10B may be extended to more
complex 2α+Xn systems such as 11,12Be where the valence neutrons can be thought
of as occupying combinations of σ and π -orbitals. The interactions between these
valence particles will perturb the zeroth order molecular picture, but it is understood
that some of the molecular characteristics are retained [6].

1.7.2 More Complex Molecular States and the Extended Ikeda
Diagram

1.7.2.1 Asymmetric Cores

Based upon the concept that neutrons may be exchanged between α-particles it has
been proposed that it may also be possible to form covalent structures from non-α
cores in other systems. The next best two centered case corresponds to cores formed
from an α-particle and an 16O nucleus. 16O possesses a closed shell, but not quite
the degree of inertness of the α-particle (it has a first excited state of 6.05 MeV,
0+, compared with 20.2 MeV). Nuclei formed from these two components produce
neon isotopes. The nucleus 20Ne is known to have a well-developed α+16O cluster
structure [55, 100, 101], the asymmetric structure giving rise to two rotational bands
of Kπ = 0± character [102]. The question as to what happens to valence neutrons
introduced into this system was addressed by von Oertzen [103]. When the neutron
orbits the α-particle it lies in a p-orbital (negative parity), when orbiting the closed
shell 16O it resides in the sd-shell (positive parity, associated with the 5/2+ ground-
state).

The two orbitals which are aligned with the intrinsic deformation of the
α-16O system are linked to the harmonic oscillator levels [nx,ny, nz] = [0,0,1] and
[0,0,2]. These are associated with the Nilsson orbitals with projections Kπ=1/2−
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Fig. 1.25 The covalent
exchange of a neutron
between the 16O and α cores
that occurs in the neon
isotopes, from Ref. [104]

and 1/2+; both have σ -character. The strong overlap of these two orbitals in the
region between the cores gives rise to the molecular binding effect, illustrated in
Fig. 1.25. The resulting hybridized orbital gives rise to parity doublet bands [103].
For a complete description of the molecular bands that appear in the neutron-rich
isotopes see Ref. [6].

1.7.2.2 More than Two Centers

The obvious extension from 2α + Xn systems is to nuclei composed of 3α-
particles—carbon isotopes. In this instance the α-particle cores may adopt a number
of different arrangements. Two possible limits are a triangular and linear arrange-
ments. This creates a greater spectrum of molecular states and hence complexity.
There are a number of theoretical predictions for the appearance and characteristics
of such states [6, 105, 106]. From the experimental perspective there is no defini-
tive evidence for their existence [6], though measurements of 13C and 14C indicate
possible rotational bands with the right characteristics.

1.7.2.3 The Extended Ikeda Diagram

The possibility that beyond α-conjugate nuclei there exists a series of states whose
properties are strongly influenced by the underlying α-particle cluster structure,
where the valence particles have the imprint of molecular exchange of the valence
particles opens up some exciting possibilities. The present state-of-play is that only
a few of these possibilities have been characterized. Understanding the conditions
under which these states might appear is important and one element is the threshold
energy—in most cases the states will not be close to the ground-state. Motivated by
the Ikeda Diagram for α-conjugate cases (Fig. 1.5) von Oertzen has devised an ex-
tended Ikeda Diagram which is shown in Fig. 1.26. The diagram charts the expected
location of these exotic states in terms of the constituent particle decay thresholds.

There are a number of intriguing possibilities in terms of new structures, for
example the evolution of the behavior of the Beryllium isotopes 8Be to 12Be with
increasing numbers of neutrons is indicated, as is the evolution of the 3α-systems.

Perhaps the one that captures the imagination most is that characterized by the
structure α+ 2n+ 16O+ 2n+ α, in 28Mg. This state has been called nuclear water
due to the similarity with the atomic H2O, however due to the nature of the valence
orbitals it more closely resembles CO2. Identification of such a structure would be
an experimental tour-de-force.
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Fig. 1.26 The modified
Ikeda Diagram proposed by
von Oertzen. The left hand
side shows the case for
structures composed of
α-particles (blue) and
neutrons (red). The right
hand side shows the case for
larger cores of 16O nuclei
(larger blue spheres). The
numbers shown are the
excitation energies at which
the cluster structures are
expected to appear and
correspond to the cluster
binding energies

1.8 Summary and Conclusions

The history of clustering reaches to the earliest days of nuclear science when some
of the first models captured nuclear properties in terms of constituent α-particles.
Though the initial pictures have been found to be overly simplistic there are a num-
ber of cases where nuclei appear to have a behavior which reflects a well-developed
α-particle structure. Key examples of these states are the 8Be ground-state and the
7.65 MeV, 0+, Hoyle-state in 12C. It is nuclei such as this which have become the
touchstones for the development of state-of-the-art nuclear models. Much of nu-
clear science has moved from this territory to the drip-lines—the limits of isospin
stability. It is here that there is a significant increase in the number of neutrons, for
example. It is in such systems that there is a co-existence of the boson and fermionic
degrees of freedom and the valence neutrons can be thought of as being covalently
exchanged between the α-particle cores. Though systems such as 9Be and 10Be are
well characterized in these terms, the precise influence at the drip-lines has yet to be
established. There is no doubt that correlations at the drip-lines play a defining role,
but the question for the future is if they precipitate clusterization.
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Chapter 2
A Pedestrian Approach to the Theory
of Transfer Reactions: Application
to Weakly-Bound and Unbound Exotic Nuclei

Joaquín Gómez Camacho and Antonio M. Moro

2.1 Introduction

Let us consider a simplified semiclassical time-dependent picture of transfer. Imag-
ine a nucleus, such as 11Be, that is traveling towards a target, say 208Pb. When 11Be
is far away from the target, we can see its structure. It is made of 4 protons and 7 neu-
trons, that interact with each other, and are subject to Pauli principle. However, one
of the neutrons is very weakly bound, so it is described by an extended halo wave-
function. The weakly bound neutron (assuming that we can identify it, because all
neutrons are identical), spends a large fraction of the time well separated of the rest,
although some fraction of the time it interacts strongly with the other protons and
neutrons, and hence it is strongly correlated with them. In fact, due to this correla-
tion, we suspect that the ground state of 11Be, in which our nucleus presently is, is
a combination of two components, in each one of them the halo neutron is coupled
to a different state of the 10Be core, that is how we call the other 4 protons and 6
neutrons.

Now the 11Be nucleus begins to approach the 208Pb target, in what is called the
incident channel. The strong Coulomb force of the target begins to act, and repels
the 4 protons, but does not affect in principle the 7 neutrons. However, as 6 of the
neutrons are strongly correlated with the protons, the 10Be core moves as a whole,
and separates from the halo neutron. As the nuclei get closer, the nuclear force
acts, and as a result the halo neutron excites, and also the 10Be core can excite. So,
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the 11Be nucleus, due to the Coulomb and nuclear interaction with the target, ends
up in a combination of the initial ground state, other bound excited states and the
continuum of break-up states.

Eventually, the two nuclei are sufficiently close so that the halo neutron has the
possibility of populating an unoccupied neutron state in the 208Pb target. This tran-
sition is the result of many-body dynamics, involving (at least) the interaction of the
neutron with the 10Be core, the neutron with the 208Pb target, and the 10Be core with
the 208Pb target. Indeed, the transition will be more probable if the initial state of the
halo neutron, bound to the 10Be core, has a significant overlap with the final state of
the neutron, in a certain bound state with the 208Pb target. This overlap is not only
a spatial overlap, occurring when the projectile and target are sufficiently close, but
also overlap in the momentum space. The neutron will not jump easily to a state
where its momentum (or its velocity) is very different from the initial one. Look-
ing from a coordinate frame fixed in the target, the initial neutron has a momentum
distribution that is centered at the projectile momentum divided by the projectile
mass, with a certain spread given by the bound wavefunction in momentum space.
The final wavefunction, bound to the target, is centered at zero, and has a spread
given by this momentum distribution of this wavefunction. The tails of these two
distributions overlap, and this favours transfer.

Once the transfer occurs, the remaining nuclei, 10Be and 209Pb in this case, have
to fly apart. As they separate, in the so called outgoing channel, coupling effects can
occur. Both 10Be and 209Pb can suffer excitations, produced by the Coulomb and
nuclear forces. They can break-up, starting from bound states, or can bind, starting
from break-up states. In addition, both in the incident and in the outgoing channels,
complicated processes such as fusion can occur. These complicated processes do not
need to be taken into account explicitly, but at least the loss of flux to the transfer
channel has to be considered.

This semiclassical time-dependent description of a transfer reaction is what we
think that is happening, but we cannot observe it directly. The only things that we
can observe are the outgoing particles and, in some cases, gamma rays. So, if in
our detectors we observe 11Be, with the proper energy, we will conclude that we
observe elastic scattering. This does not mean that 11Be was in its ground state all
the time. It could have excited, broken up, even transferred one neutron, but in the
end it finished in the ground state.

If in our detectors we observe 10Be, then we can infer that neutron transfer, or
neutron break-up, has occurred. If it is neutron break-up, we expect to see a contin-
uum of kinetic energies of 10Be, centered at an energy that is 10/11 times the inci-
dent energy of 11Be. However, if it is transfer, the 10Be will appear with a definite
energy, that is determined, for each scattering angle, by the Q-value of the reaction
and kinematic factors. A well defined experiment, with sufficient energy resolution,
should be able to determine individually the transfer probability, or cross section,
for each scattering angle and for each excitation energy of the final nuclei 209Pb
and 10Be. Even if there is not sufficient energy resolution to separate the ground
and excited states of 209Pb and 10Be, the measurement in coincidence of gamma
rays can allow to separate individual states. A thorough and up-to-date review of the
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Fig. 2.1 Co-ordinate
representation of a transfer
reaction, before and after
transfer occurs

experimental procedures to measure transfer reactions is presented in the paper by
W. Catford, in this volume.

A measurement of transfer reactions can give us unique information about the
structure of the initial (11Be) or final (209Pb) composite nuclei, which are repre-
sented,respectively, by the capital letters A, B in Fig. 2.1. In particular, it can tell
us which part of its wavefunction can be described it terms of the “cores” (10Be
and 208Pb respectively), represented by the lowercase a, b in Fig. 2.1 and a neutron.
Nevertheless, to obtain this structure information, one needs to deal with the com-
plex dynamics of a quantum mechanical three-body problem, with Coulomb and
nuclear forces in their full glory. To rescue the “beauty” of nuclear structure, we
have to tame the “beast” of nuclear reactions. This paper is a beginners’ guide to
rescue the fragile beauty of weakly bound and unbound nuclear structure, taming
the formidable beast of nuclear reactions in its full three-body power.

2.2 Theoretical Formalism

Let us denote generically a transfer reaction as:

A+ b→ a +B.

In general, this is a very complex many-body reaction. However, we can visualize it
considering that, initially, we have a nucleusA, which can be described as composed
of two clusters a + v. During the reaction, the nucleus A is fragmented into the
clusters a + v. The cluster a survives in the final state, while the cluster v gets
attached to the nucleus b to form the composite system B . For example, in the
reaction 10Be(d,p)11Be, b corresponds to 10Be, A is the deuteron, a is the proton,
B is 11Be and v is the neutron.

We can describe the quantum mechanical state of the nucleus A as

ΦA = CAavφaφvϕav(r)+ΦCA . (2.1)

In this simplified notation, φa and φv represent the internal wavefunctions of clusters
a and v,CAavϕav(r) represents the overlap function, which can be written in terms
of a normalized relative wavefunction ϕav(r) and a spectroscopic amplitude CAav .
The product of these three terms is implicitly coupled to the angular momentum of
nucleus A.
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Notice that not all the state ΦA can be described as two clusters a, v with a
certain relative motion; ΦCA represents the part of the state that has a more complex
configuration.

Similarly, the state of the nucleus B can be written as

ΦB = CBbvφbφvϕbv
(
r′
)+ΦCB . (2.2)

The transition matrix element that describes the transfer process will be a complex
many-body matrix element, that can be written as

T (aB,Ab)= 〈ΦBφaχaB |T |ΦAφbχAb〉 (2.3)

where χAb describes the relative motion of A and b, and similarly for χaB , and T is
the adequate many-body T-matrix operator. The transition matrix element, squared,
is proportional to the differential transfer cross section, which is the magnitude di-
rectly measured in the experiment. The scattering formalism relating transition ma-
trix elements and scattering observables can be seen, for example in Ref. [1].

The following approximations allow us to reduce the many-body problem to a
three-body problem:

• The terms ΦCA and ΦCB , corresponding to complex configurations of A and B , do
not contribute significantly to transfer.

• The normalized overlap functions ϕbv(r′) and ϕav(r) can be approximated by the
eigenstates of two-body Hamiltonians with interactions Vbv and Vav , respectively.
They will be represented by some real mean-field interactions.

• During the collision process the interactions between the clusters a, b, and v are
completely described by two-body interactions Vbv , Vav and Uab , that cannot
alter the internal states of the clusters. In our description of transfer, we do not
consider explicitly processes that lead to the excitations of the clusters b and a,
so the interaction between them is represented by an effective optical potential,
complex in general, that we denote by Uab .

With these approximations, the transfer matrix elements can be described as:

T (aB,Ab)= CB∗bv CAavT (3)(aB,Ab), (2.4)

where the three-body matrix element can be expressed in the post form

T (3)(aB,Ab)= 〈
χ
(−)
aB

(
R′)ϕbv(r′)∣∣Vav +Uab −UaB ∣∣Ψ (+)(R, r)〉. (2.5)

Here, Ψ (+)(R, r) is the exact solution of the 3-body problem of a, b, v with the
corresponding interactions, with boundary conditions given by a plane wave with
the incident momentum in the beam direction, on the A–b co-ordinate R, times
the bound wavefunction ϕav(r), plus outgoing waves in all open channels. UaB is
a suitable potential, arbitrary at this stage, that is used to construct the two-body
relative wavefunction χ(−)aB (R

′). This wavefunction has boundary conditions given
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by a plane wave, with the final momentum in the direction of the detector, on the
a–B co-ordinate R′, plus incoming waves.

Equivalently, one can use the prior form,

T (3)(aB,Ab)= 〈
Ψ (−)

(
R′, r′

)∣∣Uab + Vbv −UAb∣∣χ(+)Ab (R)φav(r)
〉
, (2.6)

where the three-body and two-body wavefunctions have similar meanings as before,
mutatis mutandis. Namely, Ψ (−)(R′, r′) is the exact solution of the 3-body problem
of a, b, v with the corresponding interactions, with boundary conditions given by a
plane wave with the final momentum in the detector direction, on the B–a relative
co-ordinate R′, times the bound wavefunction ϕbv(r′), plus incoming waves in all
open channels. UAb is a suitable potential, arbitrary at this stage, that is used to con-
struct the two-body relative wavefunction χ(+)Ab (R). This wavefunction has boundary
conditions given by a plane wave, with the initial momentum in the direction of the
beam, on the b–A co-ordinate R, plus incoming waves.

It should be noticed that the previous expressions are exact, assuming a 3-
body model for the transfer process. Consequently, post and prior expressions give
identical results, provided that the exact three-body wavefunction (Ψ (−)(R′, r′) or
Ψ (+)(R, r)) is used to evaluate the transition amplitude. In general, this equiva-
lence will break down when these exact wavefunctions are replaced by approxi-
mated ones.

2.2.1 Distorted Wave Born Approximation DWBA

The Distorted Wave Born Approximation (DWBA) [1–5] can be obtained assuming
that the three-body wavefunction can be approximated by

Ψ (+)(R, r)� χ(+)Ab (R)ϕav(r). (2.7)

Thus, the transition matrix element becomes, in post representation,

T (3)(aB,Ab)� T DWBA
post (aB,Ab)

= 〈
χ
(−)
aB

(
R′)ϕbv(r′)∣∣Vpost

∣∣χ(+)Ab (R)ϕav(r)
〉
, (2.8)

where

Vpost ≡ Vav +Uab −UaB. (2.9)

This approximation can be considered as the leading term of an expansion of the
transition amplitude in terms of Vpost. Thus, the accuracy of the DWBA approxi-
mation depends strongly on how the auxiliary potential UaB is chosen. Not only
this. The choice of this potential, which was arbitrary in the exact expression of
T (3)(aB,Ab) in the post form, becomes very important in the DWBA approxima-
tion.
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An equivalent derivation can be done starting from the prior expression of trans-
fer, approximating

Ψ (−)
(
R′, r′

)� χ(−)aB

(
R′)ϕbv(r′). (2.10)

Thus, the transition matrix element becomes, in prior representation,

T (3)(aB,Ab)� T DWBA
prior (aB,Ab)

= 〈
χ
(−)
aB

(
R′)ϕbv(r′)∣∣Vprior

∣∣χ(+)Ab (R)ϕav(r)
〉
, (2.11)

where

Vprior ≡ Vbv +Uab −UAb. (2.12)

It can be formally demonstrated that the prior and post expressions of DWBA
give exactly the same result. Hence, the choice of one of another representation in
DWBA is done by computational convenience, determined by the range of the inter-
actions. In many situations, an appropriate choice of the auxiliary potential produces
a certain cancellation of the remnant term (Uab−UaB or Uab−UAb in the post and
prior representations, respectively). In those situations, the transition amplitude is
mostly determined by the interaction Vav (post) or Vbv (prior) and it results nu-
merically advantageous to choose the representation for which this interaction is of
shorter range.

The accuracy of DWBA depends on the choice of the auxiliary potentials in
the incident channel (UAb) and in the outgoing channel (UaB ). These could be, in
principle, any function of the co-ordinate R and R′, respectively. Two approaches
are usually taken:

• The microscopic approach. The auxiliary potential in the outgoing channel UaB
is taken as the expectation value, in the final bound state ϕbv(r′), of the sum of
the interactions Uab + Vav . Explicitly,

UaB
(
R′)=

∫
d3r′

∣∣ϕbv(r′)∣∣2(Uab + Vav). (2.13)

Similarly, UAb is taken as the expectation value, in the initial bound state, of
the sum of the interactions Uab + Vbv ,

UAb(R)=
∫
d3r

∣∣ϕav(r)∣∣2(Uab + Vbv). (2.14)

In practical applications of DWBA, it is very convenient that the auxiliary po-
tentials are central, so that they depend on the value of the radial co-ordinate
(UAb(R), UaB(R′)) and not on its direction. This is achieved considering only
the monopole part of the folding interaction, or, equivalently, averaging the fold-
ing potential over all the magnetic substates.

The microscopic approach has the advantage of being completely determined
by the two-body interactions between the fragments. From the formal point of
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view, this approach would be the natural one to follow, in order to choose UAb so
that the term Uab + Vbv −UAb is minimal, for the bound state ϕav .

On the negative side, it is not trivial that the interactionUAb , calculated accord-
ing to Eq. (2.14), reproduces accurately the elastic scattering on the Ab channel.
The interactionsUab , Vav , and Vbv should be taken as complex interactions, in or-
der to reproduce elastic scattering or transfer, but in this case Vav and Vbv can not
be used to obtain bound states, unless the interactions are explicitly energy depen-
dent. Finally, this approach excludes completely any effect of break-up channels
on the three-body wavefunction. Hence, this approach would be valid when the
three-body scattering wavefunctions are dominated by their elastic component,
either in the incident or in the exit channels.

• The phenomenological approach. The auxiliary potential in the incident channel
UAb is obtained by fitting the elastic scattering data on the Ab channel. The auxil-
iary potential in the exit channel, UaB , is obtained by fitting the elastic scattering
on the aB channel. This approach has the advantage of allowing for a consistent
description of transfer reactions, as well as of elastic scattering in the incident
and outgoing channels. It takes into account, through the use of optical poten-
tials, the effect of complex reaction processes, such as fusion, that can remove
flux from the elastic and from the transfer channels. Furthermore, the effect of
some three-body reactions, such as break-up, which also remove flux from elastic
and transfer channels, are approximately taken into account because the optical
potentials fit the experimental elastic cross sections, which are affected by all
these dynamic processes. On the negative side, it is not always possible to find
the elastic data for the outgoing channel. If the final state of nucleus B is not in
its ground state, but on an excited state, it will not be possible to measure the
corresponding elastic scattering. This is particularly true if the final state is in the
continuum. Moreover, the optical potentials reproduce typically the asymptotic
wavefunctions, which determines the scattering amplitudes and differential cross
sections. It does not necessarily reproduce the wavefunctions in the internal radial
range that is relevant for the transfer matrix elements.

The coupling scheme assumed in the DWBA method is schematically depicted
in Fig. 2.2(a) for the 10Be(d,p)11Be reaction. The solid arrow indicates that only
transfer from the ground state of the deuteron to the p + 11Be channel is explicitly
included. The effect of breakup channels of the deuteron (represented by the shaded
area) is completely neglected in the afore-mentioned microscopic approach, and
only partially taken into account in the phenomenological approach, through its
effect on the elastic wavefunction.

In general, DWBA has been, and still is, a key approach to describe transfer re-
actions, and it has been used extensively to extract spectroscopic information on
nuclear structure, in particular spectroscopic amplitudes (see e.g. [4, 6–9]). How-
ever, this method is based on a rather crude approach to the three-body problem,
and is expected to be accurate only when the elastic scattering, in the incident and
outgoing channels, is dominant. For the case of exotic nuclei, which are frequently
weakly bound, break-up channels can play a very important role in the three-body
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Fig. 2.2 Comparison of
different coupling schemes
discussed in this work for the
reaction 10Be(d,p)11Be: (a)
DWBA, (b) ADWA,
(c) CDCC-BA and (d) CRC

dynamics. Hence, it is important, in order to extract reliable spectroscopic informa-
tion from transfer reactions with exotic nuclei, to check the validity of the DWBA
method by comparing it with other approaches that take into account the role of
break-up channels.

2.2.2 Adiabatic Distorted Wave Approximation ADWA

The DWBA approach, as mentioned previously, relies heavily on the assumption
that the elastic channel dominates the reaction. This does not only imply that the
dominant cross sections is elastic, but also that, during the collision process, the
three-body wavefunction can be approximated by the elastic component. Note that
these two facts are not equivalent. There can be dynamic situations in which elas-
tic cross section dominates, meaning that the asymptotic three-body wavefunction,
at large distances, is dominated by the elastic component. However, this does not
mean that at short projectile-target distances, which give the main contribution to
the transfer matrix element, the elastic component should be dominant. Dynamic
polarization effects make that the composite projectile can be strongly distorted at
short distances, even when asymptotically the energy matching conditions make the
elastic channel dominant.

Moreover, the phenomenological DWBA approach relies on the use of optical po-
tentials, usually taken as local, angular momentum-independent potentials, chosen
to reproduce elastic scattering. This means that the optical potentials will reason-
ably reproduce the phase shifts, for all partial waves, in the elastic channel. In other
words, the phenomenological DWBA approach reproduces the elastic wavefunction
asymptotically, at large projectile-target distances. It is not obvious that the elastic
wavefunction used in the phenomenological DWBA approach reproduces correctly
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the elastic component of the wavefunction, in the radial range relevant for the trans-
fer T-matrix elements.

Due to these limitations, it would be desirable to have an alternative formula-
tion, which maintains the relative simplicity of DWBA, and whose ingredients can
be completely determined from experiment. This is achieved by the Adiabatic Dis-
torted Wave Approximation (ADWA), which was initially formulated by Johnson
and Soper [10]. This approach is formulated in principle for (d,p), or (d,n) re-
actions, although it could be applied to other weakly bound composite systems. It
relies on the fact that the composite projectile has a relatively low binding energy
(2.22 MeV in the case of the deuteron), and so, if the collision energy is relatively
high, we can expect that, during the collision process, the relative proton-neutron
co-ordinate does not change significantly; it is “frozen”. Under this situation, the
relevant interaction that determines accurately the projectile-target wavefunction is
not the phenomenological deuteron-target interaction that would reproduce elastic
scattering, but the sum of the interactions of each one of the fragments of the pro-
jectile (proton and neutron in the deuteron case) with the target.

In the adiabatic approximation [10] (also called sudden approximation by some
authors) the three-body wavefunction can be written as

Ψ (+)(R, r)� χ(+)Ab (R, r)ϕav(r), (2.15)

where χ(+)Ab (R, r) is the solution of a two-body scattering problem, on the co-
ordinate R, in which the interaction is given by

UAb(R, r)=Uab(Rab)+ Vbv
(
r ′
)
. (2.16)

Indeed, the potential that describes the scattering wavefunction, although two-body,
is not central and so the calculation of the adiabatic wavefunction, for each value
of the a–v separation r is very complicated, but it has been done [11, 12]. Besides,
the adiabatic approximation to the three-body wavefunction is not accurate for large
values of r, where one would expect to see outgoing waves, instead of the exponen-
tial decay given by the bound two-body wavefunction ϕav(r).

Fortunately, these shortcomings of the adiabatic wavefunctions are not impor-
tant, if one is only interested in evaluating the matrix element involved in transfer.
These are dominated by the Vav(r) interaction (the proton-neutron interaction, in
the deuteron case) which has a short range. Note that, even if the a–v wavefunc-
tion ϕav(r) has a relatively long range, which is the case for weakly bound halo
systems, Vav(r) has a much shorter range. Hence, for the purpose of evaluating the
transfer matrix element, one can calculate the adiabatic wavefunction using the po-
tential evaluated at r = 0. This leads to the Johnson and Soper approximation [10],
in which

Ψ (+)(R, r)� χ(+)Ab (R)ϕav(r), (2.17)

where χ(+)Ab (R) is the solution of a two-body scattering problem, on the co-ordinate
R, in which the interaction is given by

UJSAb (R)=Uab(R)+Ubv(R). (2.18)
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Note that in this expression the b–v interaction Vbv , which would in general be
energy dependent, and would be responsible for the bound state ϕbv(r′), is replaced
by the optical potential Ubv that describes the b–v interaction at the same incident
energy per nucleon. This is justified by the adiabatic approximation; the transfer
process dynamics is consistent with freezing the a–v co-ordinate, that then scatters
from the b target with an interaction that is the sum of Ubv and Uab interactions at
the same energy per nucleon.

Several refinements and corrections have been performed within the ADWA for-
malism. For example, a finite-range version of the adiabatic potential was proposed
by Johnson and Tandy [13]:

UJTAb (R)=
〈ϕav(r)|Vav(Uab +Ubv)|ϕav(r)〉

〈ϕav(r)|Vav|ϕav(r)〉 . (2.19)

However, for the purpose of the analysis of (d,p) and (p, d) reactions, the simplest
Johnson-Soper expression given by Eq. (2.18) is by far the most widely used. Here,
we will outline its advantages and disadvantages. On the positive side, the ADWA
approach ingredients are completely determined by experiments. These ingredients
are the proton-target and neutron-target optical potentials, evaluated at half of the
deuteron incident energy, as well as the well known proton-neutron interaction.

The adiabatic approximation is equivalent to neglect the excitation energy of the
states of the projectile [10]. The adiabatic wavefunction takes into account the exci-
tation to breakup channels, assuming that these states are degenerate in energy with
the projectile ground state, as illustrated in Fig. 2.2(b). Therefore, the ADWA ap-
proach takes into account, approximately, the effect of deuteron break-up on the
transfer cross section, within the adiabatic approximation. So, it should be well
suited to describe deuteron scattering at high energies, around 100 MeV per nu-
cleon. Systematic studies [14–16] have shown that ADWA is superior to standard
DWBA for (d,p) scattering at high energies.

On the negative side, the ADWA approach does not consistently describe elastic
scattering and nucleon transfer. Although physically one considers that elastic scat-
tering, transfer and break-up should be closely related, so that the increase of flux
in one channel should reduce the flux in the others, this connection is not present
in ADWA. On the other hand, the arguments leading to ADWA are strongly asso-
ciated with the assumption that the transfer is governed by a short range operator.
So, it is not obvious that the approximations remain valid for other weakly bound
systems, like 11Be. Even in the case of (d,p) scattering, the transfer matrix ele-
ment is determined not only by the n–p interaction, but also by the proton-target
and neutron-target interactions, that define the remnant term. It is not clear a-priori
the role of these terms, that would have contributions of three-body configurations
in which proton and neutron are not so close together. A promising alternative, that
avoids the presence of these remnant terms, has been proposed by Timofeyuk and
Johnson [17].
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2.2.3 Continuum Discretized Coupled Channels Born
Approximation CDCC-BA

In scattering of weakly bound nuclei, coupling to break-up channels can play an
important role. DWBA may not be sufficiently accurate, as the three-body wave-
function is not dominated by the elastic channels. ADWA requires to assume the
adiabatic approximation for the composite projectile, which may not be accurate if
the collision energy is not sufficiently high. Besides, the simple Johnson-Soper ex-
pression requires to assume that the transfer operator is of short range, which may
not be accurate beyond (d,p) reactions.

A more accurate approach for transfer is obtained if the three-body wavefunction
is approximated in terms of a basis of the states of the relative motion of the a + v
sub-system, i.e.

Ψ (+)(R, r)≈ Ψ (+)CDCC(R, r)=
N∑
i=0

χ
(+)
Ab,i (R)ϕav,i(r). (2.20)

Here, the index i corresponds to a set of a+v states explicitly included in a coupled
channels calculation (ϕav,i(r)), which would correspond in general to a given spin
and spin projection (i = 0 denotes the ground state of the a + v system). This basis
of states should include other possible bound states of the a+v system, if present, as
well as a suitable discrete representation of the two-body continuum states. In actual
calculations, this continuum must be truncated in excitation energy and limited to a
finite number of partial waves � associated to the relative co-ordinate r. Normaliz-
able states representing the continuum should be obtained for each � value. This can
be achieved making use of a pseudo-state basis and diagonalizing the a+v Hamilto-
nian [18]. Alternatively, continuum states of the a+ v Hamiltonian can be obtained,
and normalizable states (bins) can be obtained by averaging these continuum states
over a certain energy interval [19].

The model wavefunction given by Eq. (2.20) must verify the Schrödinger equa-
tion: [H − E]Ψ (+)CDCC(R, r) = 0. To determine the radial coefficients χ(+)Ab,i (R),
one multiplies this equation on the left by each of the internal wavefunctions
ϕav,i(r)∗ and integrates along the coordinate r. This gives rise to a set of coupled
differential equations:

[
E − εiav − T̂Ab −UiiAb(R)

]
χ
(+)
Ab,i(R)=

N∑
j �=i
U
ij
Ab(R)χ

(+)
Ab,j (R), (2.21)

where UijAb are the transition potentials defined as

U
ij
Ab(R)=

∫
drϕ∗av,i(r)(Uab +Ubv)ϕav,j (r). (2.22)

The coupled channels solution χ(+)Ab,i (R) corresponds to the outgoing waves in all
different channels i, for boundary conditions given by a plane wave in the initial
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bound state i = 0. The potentials Uab and Ubv are to be understood as effective in-
teractions (complex in general) describing the elastic scattering of the corresponding
a+ b and b+ v sub-systems, at the same energy per nucleon as in the incident pro-
jectile. In particular, Ubv will be described in general by a complex optical potential,
and will differ from the interaction Vbv used to generate the bound state wavefunc-
tion of the b+ v system.

Note that, without any loss of generality, we can introduce an arbitrary auxiliary
potential UAb(R), so that Eq. (2.21) can be written as

[
E − εiav − T̂Ab −UAb(R)

]
χ
(+)
Ab,i (R)=

N∑
j

V
ij

prior(R)χ
(+)
Ab,j (R), (2.23)

where V ijprior(R) are the matrix elements of Vprior = Uab + Ubv − UAb between the
states of the A system.

Once the CDCC wavefunction (2.20) is obtained, it can be inserted into Eq. (2.5)
to give:

T (CDCC)(aB,Ab)= 〈
χ
(−)
aB

(
R′)ϕbv(r′)∣∣Vpost

∣∣Ψ (+)CDCC(R, r)
〉
. (2.24)

with Vpost given by Eq. (2.9). To clarify the link between the CDCC-BA and DWBA
methods it is convenient to rewrite this expression as:

T (CDCC)(aB,Ab)= 〈
χ
(−)
aB

(
R′)ϕbv(r′)∣∣Vpost

∣∣χ(+)Ab,0(R)ϕav,0(r)
〉

+
N∑
i=1

〈
χ
(−)
aB

(
R′)ϕbv(r′)∣∣Vpost

∣∣χ(+)Ab,i (R)ϕav,i (r)
〉
. (2.25)

The first term in this expression corresponds to the direct transfer, proceeding di-
rectly from the ground state of the projectile (e.g. the deuteron, in a (d,p) re-
action), whereas the second term accounts for the multi-step transfer occurring
via the excited states of the projectile (p–n continuum states in the case of the
deuteron). These two types of processes correspond, respectively, to the solid and
dashed lines in Fig. 2.2(c) for the 10Be(d,p)11Be case. Clearly, the multi-step pro-
cess going through the breakup channels are omitted in the DWBA calculation. At
most, the DWBA considers the effect of these channels on the elastic scattering if
a suitable choice of the entrance optical potential is made. The adiabatic approx-
imation includes in principle both mechanisms, but under the assumption that the
excited (breakup) channels of the projectile are degenerate with the ground state
[Fig. 2.2(b)]. The advantage of the CDCC-BA approach is that all relevant bound
and continuum states in the a + v system are explicitly included in the calculation.

Some early comparisons between these three methods can be found in Refs. [18,
20–22] and the main results are also summarized in Ref. [19]. Due to numerical lim-
itations, these first studies where done using a zero-range approximation of the Vav
potential. Overall, they find that the ADWA model describes well the direct trans-
fer contribution. However, the multi-step contribution, which are completely absent
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in DWBA, are described very inaccurately by the adiabatic approximation. At low
energies (Ed < 20 MeV) the discrepancy between the ADWA and CDCC-BA cal-
culation can be understood because at these energies the adiabatic approximation
itself is questionable. However, even at medium energies (Ed ≈ 80 MeV) there are
situations in which transfer through breakup channels is found to be very signifi-
cant, and therefore the ADWA method did not work well either. In these situations,
the CDCC-BA should be better used instead. The disadvantage of the CDCC-BA
calculations is that, in principle, a large basis of internal states has to be included,
making this approach much more demanding numerically.

Finite-range effects have been studied within the adiabatic approximation in
Refs. [23, 24] and were found to be small (<10 %) at energies below 20–30 MeV/u
but become more and more important as the incident energy increases. This limita-
tion should be also taken into account in the analysis of experimental data.

2.2.4 Coupled Reaction Channels CRC

It was stated that Eqs. (2.5) and (2.6) provide the exact solution to the 3-body scat-
tering problem, provided that Ψ (+)(R, r) (in the post form) or Ψ (−)(R′, r′) (in the
prior form) correspond to the exact three-body wavefunctions with the appropri-
ate boundary conditions. However, in practical calculations, these exact solutions
are not available and thus they need to be replaced by approximated ones, such as
the factorized form used in the DWBA method, the adiabatic wavefunction or the
CDCC expansion. In all these approximations, the three-body wavefunction is re-
stricted to configurations corresponding to either the initial or the final channel. For
example, in the post representation, the initial state is a solution of the three-body
Schrödinger equation

[T̂ + Vav +Ubv +Uab −E]Ψ (+)(r,R)= 0, (2.26)

where T̂ stands for the full kinetic energy operator. Asymptotically, the solution of
this equation is of the form

Ψ (+)(r,R)→ ϕav(r)eiK·R + outgoing waves, (2.27)

where the “outgoing waves” contain contributions from all open channels. This in-
cludes elastic and breakup channels, but also rearrangement channels of the a + b
and v+ b pairs, if they are present. In principle, the eigenstates of the a+ v Hamil-
tonian form a complete set and hence the expansion Eq. (2.20) should contain all
the relevant channels. In particular, the asymptotic part of (2.20) should contain
information from all open channels, including rearrangement channels. However,
rearrangement channels corresponding to the b+ v system would behave asymptot-
ically as a product of the bound wavefunction ϕbv(r′) times a plane wave in the aB
co-ordinate. Although these states could be in principle expressed in the ϕav(r) ba-
sis, this would require a very large number of energies and angular momenta [19]. In
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other words, any finite CDCC approximation will describe poorly the contribution
from rearrangement channels.

A heuristic way of incorporating rearrangement channels is provided by the
Coupled-Reaction-Channels (CRC) framework [1, 5, 25–27]. We present a brief
derivation here that highlights its connection with the other methods discussed in
this work and, in particular, with the CDCC-BA method of Sect. 2.2.3. The idea of
the CRC method is to use a model wavefunction which incorporates explicitly con-
tributions from several mass partitions. For simplicity, let us assume that we wish to
consider explicitly excited states (bound or unbound) of the incoming partition plus
some excited states of the aB partition. Then, we may use the following ansatz:

Ψ (+)(R, r)≈ Ψ (+)CRC(R, r)=
∑
i

χ
(+)
Ab,i (R)ϕav,i(r)

+
∑
j

χ
(+)
aB,j

(
R′)ϕbv,j (r′). (2.28)

This wavefunction can be interpreted as a generalization of the CDCC expansion of
Eq. (2.20). The radial functions χ(+)Ab,i (R) and χ(+)aB,j (R

′) are obtained by substituting
the model wavefunction (2.28) into the Schrödinger equation:

[H −E]Ψ (+)CRC = 0. (2.29)

To get the equations satisfied by χ(+)Ab,i (R) we replace in this equation Ψ (+)CRC by
the ansatz (2.28), multiply on the left by each of the functions ϕ∗av,i(r) and integrate
along r, giving rise to the system of equations:

∑
i′
〈ϕav,i |H −E∣∣χ(+)

Ab,i′ϕav,i′
〉+∑

j

〈ϕav,i |H −E∣∣χ(+)aB,j ϕbv,j
〉= 0. (2.30)

Now, recall that H can be written in two different forms, depending on whether one
chooses the representation of the initial or final channel, namely,

H = T̂Ab +Hav +UAb(R)+ Vprior (prior representation) (2.31a)

= T̂aB +Hbv +UaB
(
R′)+ Vpost (post representation), (2.31b)

where Hav = T̂av + Vav and Hbv = T̂bv + Vbv are the internal Hamiltonians of the
a + v and b + v systems, and UAb(R) and UaB(R′) are auxiliary potentials, to
be specified later. The prior and post interactions are Vprior = VAb − UAb(R) and
Vpost = VaB −UaB(R′), with VAb ≡ Vbv +Uab , VaB ≡ Vav +Uab .

The first term in (2.30) is a matrix element between internal states of the initial
partition; hence, the natural choice for H to evaluate this part is the prior represen-
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tation:
[
E − εiav − T̂Ab −UiAb(R)

]
χ
(+)
Ab,i (R)=

∑
i′
〈ϕav,i |Vprior|ϕav,i′ 〉χ(+)Ab,i′(R)

+
∑
j

〈ϕav,i |H −E∣∣χ(+)aB,j ϕbv,j
〉
, (2.32)

where we have used the fact that 〈ϕav,i |Hav|ϕav,i′ 〉 = εiavδi,i′ and that the kinetic
energy operator T̂Ab does not depend on the r coordinate. Note that a superscript
i has been added to the auxiliary potential UiAb(R) to indicate that this potential
can be taken differently for each of the equations above. For example, this potential
could be taken as the monopole part of the cluster-folded potential 〈ϕav,i |VAb|ϕav,i〉.

Likewise, to get the equations for χ(+)aB,j (R
′), we use the post form of the Hamil-

tonian in the second term of Eq. (2.30), and project the Schrödinger equation onto
the functions ϕ∗bv,j (r′), giving rise to:

[
E − εjbv − T̂aB −UjaB

(
R′)]χ(+)aB,j

(
R′)=∑

j ′
〈ϕbv,j |Vpost|ϕav,j ′ 〉χ(+)aB,j ′

(
R′)

+
∑
i

〈ϕbv,j |H −E∣∣χ(+)Ab,iϕbv,i
〉
. (2.33)

The set of equations (2.32) and (2.33) constitute the CRC equations for the three-
body problem at hand. The first set of equations (2.32) correspond to the functions
χ
(+)
Ab,i (R), which describe the relative motion between the projectile and the target

for each state of the projectile i. The source term (RHS in this equation) shows that
these functions are affected by two kinds of couplings. The first term, corresponds
to couplings between the state i and other states of the same mass partition (i′), i.e.,
inelastic scattering. These coupling potentials are more explicitly given by:

〈ϕav,i |Vprior|ϕav,i′ 〉 =
∫
ϕ∗av,i(r)

(
VAb −UiAb

)
ϕav,i′(r)dr . (2.34)

The second term in the RHS of (2.32) describes the couplings between the states of
the initial (Ab) partition and the second partition (aB). Explicitly,

〈ϕav,i |H −E∣∣χ(+)Ab,j ϕbv,j
〉=

∫
ϕ∗av,i(r)(H −E)χ(+)aB,j

(
R′)ϕbv,j (r′)dr. (2.35)

We see that, in this case, we cannot extract the χ(+)aB,i(R
′) function from the integral,

as we did for the first term. The reason is that this function depends on the variable
R′, which is a function of both r and R. This kind of couplings are said to be non-
local, because they depend on the values of χ(+)aB,j (R

′) in all the configuration space,
and not just in a single point R. In the evaluation of this matrix element, we need to
replace the Hamiltonian by either its prior or post form. Since these matrix elements
are between states of two different pair Hamiltonians (Hav and Hbv) the choice is
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not as clear as in the case of the local matrix elements. In either case, we will get
matrix elements of the interaction potentials, but also terms involving the overlaps
〈ϕav,i |ϕbv,j 〉, which give a non-zero contribution because these states are not or-
thogonal (they are eigenstates of different Hamiltonians). These are the so-called
non-orthogonality terms referred in the literature in the context of the CRC formal-
ism. A more detailed discussion of these terms can be found elsewhere [1, 27].

The same kind of couplings are present in the CRC equations for χ(+)aB,j ,
Eq. (2.33). That is, transfer channels are induced by couplings with the states of
the initial partition but they are also indirectly affected by the couplings with other
excited states of the final partition. These two kinds of couplings are depicted in
Fig. 2.2(d). In particular, we see that, in this scheme, the elastic scattering will be
modified by the coupling to the inelastic channels, as in the CDCC method, but also
by couplings with the rearrangement channels. In many situations, however, it is
assumed that the latter are small and thus a good approximation to the first set of
equations can be obtained by just neglecting these couplings altogether, i.e.

[
E − εiav − T̂Ab −UiAb(R)

]
χ
(+)
Ab,i (R)

≈
∑
i′
〈ϕav,i |VAb −UiAb(R)|ϕav,i′ 〉χ(+)Ab,i′(R). (2.36)

Within our three-body model, the interaction VAb corresponds to the sum of the in-
teractions between the projectile constituents (a and v) and the target b. In general,
these are complicated operators, depending on the energy and angular momentum
but, for the purpose of solving (2.36) they are typically approximated by some op-
tical potentials describing the elastic scattering of each constituent by the target
at the same incident energy per nucleon. That is, ones makes the approximation:
VAb ≈ Ubv + Uab . Moreover, the auxiliary potential UiAb is taken to minimize the
difference VAb − UiAb = Ubv + Uab − UiAb , which is just the term Vprior defined
in Eq. (2.12). For example, a possible choice would be the monopole term of the
expected value,

UiAb(R)= 〈ϕav,i |Ubv +Uab|ϕav,i〉. (2.37)

With this choice, the set of equations (2.36) are nothing else but the CDCC equations
of Eq. (2.21). If we insert the approximated solutions χ(+)Ab,i (R) of (2.36) into (2.33)

we get a first order approximation for the functions χ(+)aB,j (R
′), from which the scat-

tering amplitude for transfer can be obtained. This corresponds to the CDCC-BA
approximation discussed in previous sections. It can be demonstrated (see e.g. [5])
that the scattering amplitude obtained from the asymptotics of χ(+)aB,j (R

′) is entirely
equivalent to the solution of the integral form given by Eq. (2.5) in which the exact
wavefunction is approximated by its CDCC counterpart. Therefore, this first order
solution of the CRC equations is just the CDCC-BA approximation discussed in
Sect. 2.2.3.

The process could be continued iteratively, by inserting the χ(+)aB,i(R
′) into the first

set of equations (2.32), thus providing an improved approximation to the χ(+)Ab,i(R)
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functions and so on. An early comparison between the CDCC-BA and the full
fledged CRC calculation can be found in [25] for the 16O(d,p)17O(2s, 3.27 MeV)
at several deuteron energies. At low energies (Ed < 40 MeV) the effect of the proton
channel on the elastic cross section is significant but decreases rapidly as the energy
increases, being negligible for Ed > 40 MeV. At these energies, the CDCC-BA is
found to be accurate.

2.2.5 Connection with the Faddeev Formalism

The CRC method is based on a heuristic ansatz for the three-body wavefunction,
rather than on a rigorous treatment of the three-body scattering problem. Such a
rigorous solution exists and was provided many years ago by Faddeev [28]. The idea
is to express the three-body wavefunction Ψ (+) as a sum of three components, each
of them expressed in a definite Jacobi set of coordinates {ri ,Ri}, with i = 1,2,3
(using our previous notation, r1 ≡ r and R1 ≡ R; r2 ≡ r′ and R2 ≡ R′):

Ψ (+) = Ψ (1)(r1,R1)+Ψ (2)(r2,R2)+Ψ (3)(r3,R3), (2.38)

verifying the triad of equations

[E − T̂ − Vav]Ψ (1) = Vav
(
Ψ (2) +Ψ (3)) (2.39a)

[E − T̂ − Vbv]Ψ (2) = Vbv
(
Ψ (1) +Ψ (3)) (2.39b)

[E − T̂ − Vab]Ψ (3) = Vab
(
Ψ (1) +Ψ (2)). (2.39c)

Note that adding the three equations one recovers the original Schrödinger equation
(2.26). The advantage of this decomposition is that each equation contains only
one pair interaction and, therefore, the asymptotic form of the associate Faddeev
component can only contain bound states supported by that interaction. Thus, Ψ (1)

contains the v–a short range correlations, in particular, the v–a bound states, Ψ (2)

contains the v–b short range correlations, including v–b bound states, and Ψ (3)

contains the a–b short range correlations, and would include the a–b bound states,
assuming that they were relevant for the reaction.

At first sight, the link between this set of equations and the methods discussed in
the preceding sections, is not obvious. This connection became more clear after the
work of Austern, Kawai and Yahiro [29, 30]. They use the alternative but equivalent
set of Faddeev equations

[
E − T̂ − Vav −P(Vbv + Vab)P

]
Ψ̃ (1) = Vav

(
Ψ̃ (2) + Ψ̃ (3)) (2.40a)

[E − T̂ − Vbv]Ψ̃ (2) = (Vbv −PVbvP)Ψ̃ (1) + VbvΨ̃ (3) (2.40b)

[E − T̂ − Vab]Ψ̃ (3) = (Vab −PVabP)Ψ̃ (1) + VabΨ̃ (2) (2.40c)
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where P is a projector defined as

P =
N∑
i=1

|ϕav,i〉〈ϕav,i |, (2.41)

withN denoting a finite number of states of the a+v system. In the present context,
this projector corresponds to the model-space spanned by the CDCC wavefunction.
The properties of this projector are discussed in [29]; it selects low angular momenta
� associated with the a–v relative coordinate. Note that the individual components
{Ψ̃ (i)} will differ from the original ones {Ψ (i)} but the total wavefunction, obtained
as the sum of the three components, will be the same. We can identify PVbvP �
Ubv and PVabP �Uab with the effective complex interactions that would describe
on-shell elastic matrix elements when the v–b and a–b energies per nucleon are
close to the projectile incident energy per nucleon. This identification is possible
because we are projecting on states in which the v–a relative energy and angular
momentum is not large.

Addition of (2.40b) and (2.40c) gives:

[E − T̂ − Vav −Ubv −Uab]Ψ̃ (1) = VavΨ̃ (2+3) (2.42a)

[E − T̂ − Vbv − Vab]Ψ̃ (2+3) = [
Vbv + Vab −P(Vbv + Vab)P

]
Ψ̃ (1) (2.42b)

with Ψ (2+3) ≡ Ψ (2) + Ψ (3). As the model-space is augmented, the term [Vbv +
Uab − P(Vbv + Vab)P] appearing in the RHS of (2.42b) becomes smaller and
smaller, thus suppressing the component Ψ (2+3). Under these circumstances, the
RHS in the first equation can be neglected giving the zero-th order approximation

[E − T̂ − Vav −Ubv −Uab]Ψ̃ (1) ≈ 0. (2.43)

This corresponds to the CDCC approximation. It becomes clear that the accuracy
of the CDCC-BA approximation depends on the ability of the CDCC expansion to
represent the full solution, at least within the region of {r,R} for which the transition
operator is important. This is expected to happen when the short range correlations
between b–v and a–b are not important. In particular, the pair interactions Ubv and
Uab should not support any bound states. In fact, it was argued by Austern and
collaborators [29] that the apparent success of the CDCC method to describe elastic
and breakup reactions is largely due to the use of complex optical potentials to
represent the Ubv and Uab interactions.

Recently, it has become possible to solve the Faddeev equations for a number of
nuclear reactions [31–34], thus providing a very useful assessment for more approx-
imate methods. In Ref. [35], a systematic comparison was performed for (d,p) re-
actions on 10Be, 12C and 48Ca targets, at several incident energies, and it was found
that CDCC-BA and Faddeev agree very well at small incident energies (a few MeV
per nucleon) but the agreement progressively deteriorates with increasing incident
energies. Moreover, as the energy increases, the absolute cross section drops down
due to the less favorable energy/momentum matching conditions [19]. So, at these
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energies, small discrepancies in the absolute cross section imply a sizable relative
uncertainty. This suggests that transfer reactions at high energies (E > 100 MeV)
are not suitable for the extraction of structure information, such as spectroscopic
factors. In Ref. [31] the two methods were compared for the 11Be(p,d)10Be reac-
tion at 38.4 MeV/u and it was found that the former underestimates the Faddeev
result by about 30 %. This relatively large discrepancy could be partially due to
the absence of an imaginary part in one of the fragment-target interactions (p–n),
which favours the coupling with rearrangement channels and makes less justified the
approximation (2.43), as pointed out in Ref. [29]. Further calculations and bench-
marks comparisons, for other systems and energies, are clearly needed to establish
the limits of validity of the CDCC-BA and more approximated methods (DWBA,
ADWA).

The Faddeev method can be also linked to the CRC formalism. For this purpose,
we introduce a projector extended to the bound states, and possibly the narrow res-
onances, of the a + b system

Q =
N∑
i=1

|ϕab,i〉〈ϕab,i |, (2.44)

and the complementary projector P = 1 −Q. Then, we can identify the projected
interaction Uab = PVabP , which can eventually be approximated by a complex
effective interaction that does not support any bound state or narrow resonance.
Making use of these projectors, we rewrite the Faddeev equations as:

[E − T̂ − Vav]Ψ̃ (1) = (Vav +Uab)Ψ̃ (2) + VavΨ̃ (3) (2.45a)

[E − T̂ − Vbv]Ψ̃ (2) = (Vbv +Uab)Ψ̃ (1) + VbvΨ̃ (3) (2.45b)

[E − T̂ − Vab]Ψ̃ (3) = (Vab −Uab)Ψ̃ (1) + (Vab −Uab)Ψ̃ (2). (2.45c)

Again, one can see that, adding the three equations, one recovers the original form
of the Faddeev equations. When we are interested in elastic scattering, inelastic scat-
tering or transfer reactions, the wavefunction components Ψ̃ (1,2) will be important,
as they appear either in the incident or the outgoing channels. However, Ψ̃ (3) only
contributes through the couplings. Thus, insofar as the term Vab−Uab is small, this
component can be neglected. Note that this will be accurate provided that a + b
bound states and narrow resonances do not play a role in the reaction. Neglect-
ing Ψ̃ (3), and including arbitrary potential matrices UAb and UaB in both sides of
Eqs. (2.45a)–(2.45c), we get

[E − T̂ − Vav −UAb]Ψ̃ (1) = (Vav +Uab −UaB)Ψ̃ (2) (2.46a)

[E − T̂ − Vbv −UaB ]Ψ̃ (2) = (Vbv +Uab −UAb)Ψ̃ (1). (2.46b)

Note that if we select the potential matrices UaB and UAb as those whose matrix
elements are precisely the transition potentials in the CDCC formalism, we obtain a
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set of equations that look very similar to the CRC equations. A detailed comparison
of Faddeev and CRC is in progress, and will be published by the present authors
elsewhere.

2.3 Transfer to Unbound States

So far, we have considered transfer reactions as a tool to investigate bound states
of a given nucleus. However, in a rearrangement process the transferred particle
can populate also unbound states of the final nucleus. This opens the possibility
of studying and characterizing structures in the continuum, such as resonances or
virtual states.

As in the case of transfer to bound states, the simplest formalism to analyze
these processes is the DWBA method. In this case, the bound wavefunction ϕbv(r′)
appearing in the final state in Eqs. (2.8) or (2.10) should be replaced by a positive-
energy wavefunction describing the state of the transferred particle v with respect
to the core b. In principle, for this purpose one could use the suitable scattering
state of the v+ b system at the appropriate relative energy. However, this procedure
tends to give numerical difficulties in the evaluation of the transfer amplitude due
to the oscillatory behaviour of both the final distorted wave and the wavefunction
ϕbv(r′). To circumvent this problem, several alternative methods have been used.
We enumerate here some of them:

(i) The bound state approximation [36]. In the case of transfer to a resonant state,
this method replaces the scattering state ϕbv(r′) by a weakly bound wavefunc-
tion with the same quantum numbers � and j . In practice, this can be achieved
by starting with the potential that generates a resonance at the desired energy
and increase progressively the depth of the central potential until the state be-
comes bound.

(ii) Huby and Mines [37] use a scattering state for ϕbv(r′), but it is multiplied by
a convergence factor e−αr ′ (with α a positive real number), which artificially
eliminates its contribution to the integral coming from large r ′ values, and then
extrapolate numerically to the limit α→ 0.

(iii) Vincent and Fortune [38] questioned the bound state approximation arguing
that, in general, the bound state and resonant form factors can be very different
and, even in those cases in which the fictitious form factor gives the correct
shape, they can lead to very different absolute cross sections. They suggest
using the actual scattering state, but choosing an integration contour along the
complex plane in such a way that the oscillatory integrand is transformed into
an exponential decay, thus improving the convergence and numerical stability
of the calculation.

(iv) In a real transfer experiment leading to positive-energy states, one does not
have access to a definite final energy, but to a certain region of the continuum.
That is to say, the extracted observables, such as energy differential cross sec-
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Fig. 2.3 Radial part of the
d3/2 single-particle resonance
wavefunction in 17O at
Er = 0.95 MeV compared
with a slightly bound
wavefunction
(E =−0.1 MeV) and a bin
wavefunction, centered at the
nominal energy of the
resonance and with a width of
0.5 MeV

tions, are integrated over some energy range which, at least, is of the order
of the energy resolution of the experiment. This suggests a method of deal-
ing with the unbound states consisting of discretizing the continuum states in
energy bins, as in the CDCC approximation.

In Fig. 2.3, we show as an example the radial part of a 3/2+ resonance in 17O,
described in terms of a d3/2 neutron coupled to a zero-spin 16O core. The solid
line is a scattering wavefunction evaluated at the nominal energy of the resonance
(Erel = 0.95 MeV). Note the oscillatory behaviour at large distances. The dotted
line is a bin wavefunction, constructed by a superposition of scattering states, within
the range of 0.5 MeV around the resonance energy. It is seen that, asymptotically,
the oscillations are damped with respect to the original scattering states. Finally,
the dot-dashed line is a bound state wavefunction, with a 1d3/2 single-particle con-
figuration, and a separation energy of 0.1 MeV. This wavefunction is very simi-
lar to the scattering state at short distances, but decays exponentially at large dis-
tances.

An advantage of the method (iv) is that it can be equally applied to both resonant
and non-resonant continuum final states. An example is shown in Fig. 2.4, which
corresponds to the differential cross section, as a function of the n–9Li relative en-
ergy, for the reaction 2H(9Li, p)10Li∗ at 2.36 MeV/u measured at REX-ISOLDE
[39]. The lines are the results of CDCC-BA calculations, including the transfer to
10Li∗ continuum states, showing the separate contribution of the s-wave (�= 0) con-
tinuum and p-wave (�= 1) continuum. The strength of the measured cross section
close to zero energy is due to the presence of a virtual state in the 10Li∗ continuum,
whereas the peak around 0.4 MeV is due to a p1/2 resonance. This is an example of
how the use of transfer reactions can provide information of the continuum structure
of weakly-bound or even unbound systems.
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Fig. 2.4 Illustration of the
transfer-to-the-continuum
method, using a binning
discretization, for the reaction
2H(9Li,p)10Li∗

2.3.1 Recent Applications to Weakly Bound Halo Nuclei

Many current nuclear reactions studies are done using exotic nuclei. In the light re-
gion of the nuclear chart, many of these exotic systems are weakly bound. As in the
deuteron case, transfer reactions involving these nuclei must incorporate in some
way the effect of the coupling to the unbound states of the weakly bound nucleus.
This can be done using the ADWA or CDCC approximations discussed in the pre-
vious sections, that is, replacing the exact three-body wavefunction appearing in the
transition amplitude by their adiabatic or CDCC counterparts. Although one expects
that the CDCC-BA method provides more accurate results, most of these analyses
have been done using the DWBA or ADWA methods, partially due to the compu-
tational difficulties inherent to the CDCC-BA method. In fact, early applications of
the CDCC-BA method used invariably the zero-range approximation for the transi-
tion operator. However, there are nowadays computer codes, that permit these kind
of calculations [40] using finite range transfer. An example of this kind of applica-
tions is given by the 14N(7Be, 8B)13C reaction, which involves the weakly bound
halo nucleus 8B. This reaction was measured at Texas A&M at an energy of 84 MeV
with the purpose of extracting the spectroscopic factor and the so-called astrophys-
ical S-factor for the 8B nucleus. The reaction was later in studied in [41, 42] using
the CDCC-BA approximation in prior form.

An additional complication arises when these reactions involve deuterons in ei-
ther the initial or final state, as for example in the case of (p, d) or (d,p) reactions.
In this case both, the deuteron and halo nucleus continua, could play a role in the re-
action dynamics. Examples of these reactions are 7Be(d,n)8B [43], 10Be(d,p)11Be
[44] and 11Be(p,d)10Be [45].

To deal with these reactions one possibility is to use the ADWA and CDCC-
BA formalisms discussed in previous sections. For concreteness, let us consider the
11Be(p,d)10Be case. In post form, the CDCC-BA transition amplitude reads

T (post)(p→ d)� 〈
χ
(−)
da

(
R′)ϕpn(r′)∣∣Upa + Vna −Uda∣∣Ψ CDCC

na (R, r)
〉
, (2.47)
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Fig. 2.5 CDCC-BA
calculations for the
11Be(p,d)10Be transfer
reaction at 38.4 MeV per
nucleon. Experimental data
are from Refs. [45, 48]

where in this case a ≡10 Be. Alternatively, one can use the prior form, namely,

T (prior)(p→ d)� 〈
Ψ CDCC
pn

(
R′, r′

)∣∣Upa + Vnp −UpA∣∣χ(+)Ap (R)ϕav(r)
〉

(2.48)

with A≡11 Be.
Note that, in the post form, the 11Be continuum is explicitly taken into account,

whereas in the prior representation the deuteron continuum is considered explic-
itly.1 It is not obvious to decide beforehand which of these approximations is more
suitable for actual calculations. In Ref. [47], both amplitudes were compared for
this reaction at a proton energy of 38.4 MeV. The angular distributions obtained
from these calculations are shown in Fig. 2.5, and compared with the data from
Refs. [45, 48]. As it can be seen, both representations yield very similar results.
However, the convergence was found to be much faster in the prior representation, a
result that can be ascribed to the shorter range of the transition operator in that case.

Another formalism specifically designed to describe (d,p) and (p, d) transfer
reactions with halo nuclei is the method proposed by Timofeyuk and Johnson [17].
This approach is based on an alternative exact representation of the transfer am-
plitude in which the transition operator is the p–n potential and any effects due
to remnant terms are included in the wave function for the initial or final chan-
nel. This is achieved by choosing the auxiliary potential appearing in the transition
operator to cancel out exactly the remnant term. So, for instance, in the previous
example, in the prior representation one would make the choice UpA = Vpa . With
this choice the transfer operator becomes simply Vpn. However, the initial wave

function is no longer given by the factorized form χ
(+)
Ab (R)ϕav(r), but becomes a

1Strictly speaking, both two-body continua are part of the same three-body continuum, namely,
p + n+ 10Be. In principle, a complete basis of either sub-system would be sufficient to describe
the three-body continuum. In practice, an accurate description of the full three-body continuum
might require a very large basis and so, in actual calculations, using a truncated basis, a suitable
choice of the continuum representation can be important [46].
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complicated three-body wavefunction. To evaluate the resulting amplitude one may
use the CDCC expansions of the initial and final states [47] or the much simpler
adiabatic wave functions [17].

A similar approach was followed in Ref. [43] to study the reaction 7Be(d,n)8B.
In this case, the initial three-body wavefunction was approximated by the CDCC
expansion in p + n states, whereas the 8B continuum was treated in the simple
adiabatic prescription of Johnson and Soper [10].

2.4 Summary and Conclusions

We have presented the current status of the theoretical description of transfer re-
actions. We have shown, that, under certain assumptions, the complex many-body
problem corresponding to a rearrangement collision can be approximated by a three-
body problem in which a valence particle is transferred from one core to another.
The connection between the many-body and the three-body problem is done through
the introduction of spectroscopic amplitudes. The experimental determination of
these spectroscopic amplitudes from the observed cross section is the key objective
of the transfer reaction formalism.

The solution of the three-body problem and, in particular, the evaluation of the
T-matrix element from a bound state of the valence particle with a core (initial par-
tition), to a bound state of the valence particle with the other core (final partition),
has been discussed with an increasing degree of complexity. We start from an exact
formal expression, that gives the transfer transition amplitude as a matrix element of
the interaction with the exact three-body wavefunction with boundary conditions on
the initial partition on one side, and a two-body distorted wavefunction with bound-
ary conditions on the final partition on the other side. In the DWBA method, the
exact three-body wavefunction is approximated by a two-body distorted wavefunc-
tion, multiplied by a bound state wavefunction. This approximation, which has been
the workhorse for transfer reactions in nuclear physics for years, is not accurate
for weakly bound exotic nuclei, since is does not take into account the effects of
break-up on the three-body wavefunction.

An improvement over the DWBA method is provided by the ADWA approxima-
tion, which relies on the adiabatic approximation of the three-body wavefunction,
and assumes that the transfer interaction has a short range. The gives rise to an ap-
proximate three-body wavefunction that is accurate in the region where the valence
particle and the core are very close. This leads to a formal expression of the trans-
fer three-matrix, which has the same complexity as the DWBA, but with distorting
potentials not related to the elastic scattering. The accuracy of ADWA depends on
the validity of the adiabatic approximation, and the short range of the interaction. In
general, ADWA is well suited for deuteron scattering. However, for high energies
(about 100 MeV per nucleon), there is a significant contribution of transfer through
the continuum, where excitation energy is high enough so that the adiabatic approx-
imation may not be accurate.
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The CDCC-BA approximation describes the three-body wavefunction using a
finite representation for the continuum states in the initial or final partition. CDCC-
BA has a wider validity compared to ADWA, as it does not rely on the adiabatic
approximation, and does not require short range transition operators. However, it
is much more demanding computationally and, as one goes to higher scattering
energies, it would require to introduce explicitly high energy continuum states. It
will, in principle, describe accurately the contribution of break-up states to trans-
fer, provided convergence is found on the various parameters involved in contin-
uum discretization. However, the CDCC-BA scheme describes only the three-body
wavefunction on one partition, neglecting possible effects of multi-step processes in-
volving transfer back and forth between different partitions. The CDCC-BA method
should give an accurate description of transfer, including break-up effects, at ener-
gies from 10 MeV/u onwards.

The CRC approximation describes the 3-body wavefunction as a superposition
of wavefunctions corresponding to different mass partitions. The solution of CRC
equations involves the consideration of non-local potentials and non-orthogonality
terms, and has to be carried out iteratively. CRC has proven very useful to describe
elastic scattering and fusion in the presence of transfer cross sections that are com-
parable to the elastic cross section. This will be the case when the scattering energy
is small, of a few MeV/u, and matching conditions favour transfer to bound states.

The correct formal solution of the three-body problem was formulated by Fad-
deev, in terms of a system of equations that involve 3 components of the wavefunc-
tion expressed in terms of the 3 possible sets of Jacobi coordinates. Each component
of the wavefunction contains the short range two-body correlations for a given pair
of particles, in particular the bound states. We have shown that the CRC equations
can be obtained from the Faddeev equations by neglecting the component of the
wavefunction containing core-core correlations. The CDCC-BA equations are ob-
tained ignoring, for the 3-body wavefunctions, the correlations in two partitions, so
that only one component of the Faddeev equations is considered. We justify the use
of complex effective interactions, as the result of projecting two-body interaction in
the restricted model space.

We have discussed some applications of the CDCC-BA approach to the de-
scription of transfer involving weakly bound systems, and also to unbound states.
We have shown that CDCC-BA is able to include consistently the contribution
of resonant and non-resonant continuum. Application of CDCC-BA allows to ob-
tain, for example, the energy and width of a resonance, from the measurement of
cross sections of transfer to the continuum as a function of the energy of the ejec-
tile.

From our experience, we consider that the optimal energy range to measure trans-
fer reaction of exotic nuclei would be a few tens of MeV per nucleon. At higher
energies (100 MeV per nucleon), transfer cross sections diminish, and break-up is
dominant. At lower energies (few MeV per nucleon), multi-step processes become
important, compound nucleus effects become relevant, and the relation of cross sec-
tions with spectroscopic factors becomes more obscure.



64 J. Gómez Camacho and A.M. Moro

Acknowledgements This work has been partially supported by Spanish national projects
FPA2009-08848 and FPA2009-07653 and by the Consolider Ingenio 2010 Program CPAN
(CSD2007-00042).

References

1. G.R. Satchler, Direct Nuclear Reactions (Clarendon Press, Oxford, 1983)
2. N. Austern, R.M. Drisko, E.C. Halbert, G.R. Satchler, Theory of finite-range distorted-waves

calculations. Phys. Rev. 133, B3 (1964)
3. N. Austern, Direct Nuclear Reaction Theories (Wiley, New York, 1970)
4. T. Tamura, Compact reformulation of distorted-wave and coupled-channel born approxima-

tions for transfer reactions between nuclei. Phys. Rep. 14, 59 (1974)
5. N.K. Glendenning, Direct Nuclear Reactions (World Scientific, Singapore, 2004)
6. J. Sharpey-Schafer, The mean square radius of nuclear matter and spectroscopic factors from

the DWBA. Phys. Lett. B 26, 652 (1968)
7. J.L.C. Ford, K.S. Toth, G.R. Satchler, D.C. Hensley, L.W. Owen, R.M. DeVries, R.M. Gaedke,

P.J. Riley, S.T. Thornton, Single-nucleon transfer reactions induced by 11B ions on 208Pb: a
test of the distorted-wave Born approximation. Phys. Rev. C 10, 1429 (1974)

8. K.S. Toth, J.L.C. Ford, G.R. Satchler, E.E. Gross, D.C. Hensley, S.T. Thornton, T.C.
Schweizer, Measurements and analysis of the 208Pb(12C, 13C), (12C, 11B), and (12C, 14C)
reactions. Phys. Rev. C 14, 1471 (1976)

9. T. Tamura, T. Udagawa, M.C. Mermaz, Direct reaction analyses of heavy-ion induced reac-
tions leading to discrete states. Phys. Rep. 65, 345 (1980)

10. R.C. Johnson, P.J.R. Soper, Contribution of deuteron breakup channels to deuteron stripping
and elastic scattering. Phys. Rev. C 1, 976 (1970)

11. H. Amakawa, S. Yamaji, A. Mori, K. Yazaki, Adiabatic treatment of elastic deuteron-nucleus
scattering. Phys. Lett. B 82, 13 (1979)

12. H. Amakawa, K. Yazaki, Adiabatic treatment of deuteron break-up on a nucleus. Phys. Lett. B
87, 159 (1979)

13. R.C. Johnson, P.C. Tandy, An approximate three-body theory of deuteron stripping. Nucl.
Phys. A 235, 56 (1974)

14. J.D. Harvey, R.C. Johnson, Influence of breakup channels on the analysis of deuteron stripping
reactions. Phys. Rev. C 3, 636 (1971)

15. G.R. Satchler, Adiabatic deuteron model and the 208Pb(p, d) reaction at 22 MeV. Phys. Rev.
C 4, 1485 (1971)

16. G.L. Wales, R.C. Johnson, Deuteron break-up effects in (p, d) reactions at 65 MeV. Nucl.
Phys. A 274, 168 (1976)

17. N.K. Timofeyuk, R.C. Johnson, Deuteron stripping and pick-up on halo nuclei. Phys. Rev. C
59, 1545 (1999)

18. M. Kawai, Chapter II. Formalism of the method of coupled discretized continuum channels.
Prog. Theor. Phys. Suppl. 89(Suppl. 1), 11 (1986)

19. N. Austern, Y. Iseri, M. Kamimura, M. Kawai, G. Rawitscher, M. Yahiro, Continuum-
discretized coupled-channels calculations for three-body models of deuteron-nucleus reac-
tions. Phys. Rep. 154, 125 (1987)

20. G.H. Rawitscher, Effect of deuteron breakup on (d,p) cross sections. Phys. Rev. C 11, 1152
(1975)

21. Y. Iseri, M. Yahiro, M. Nakano, Investigation of adiabatic approximation of deuteron-breakup
effect on (d,p) reactions. Prog. Theor. Phys. 69, 1038 (1983)

22. H. Amakawa, N. Austern, Adiabatic-approximation survey of breakup effects in deuteron-
induced reactions. Phys. Rev. C 27, 922 (1983)

23. A. Laid, J.A. Tostevin, R.C. Johnson, Deuteron breakup effects in transfer reactions using a
Weinberg state expansion method. Phys. Rev. C 48, 1307 (1993)



2 A Pedestrian Approach to the Theory of Transfer Reactions 65

24. N.B. Nguyen, F.M. Nunes, R.C. Johnson, Finite-range effects in (d,p) reactions. Phys. Rev.
C 82, 014611 (2010)

25. M. Kawai, M. Kamimura, K. Takesako, Chapter V. Coupled-channels variational method for
nuclear breakup and rearrangement processes. Prog. Theor. Phys. Suppl. 89(Suppl 1), 118
(1986)

26. T. Ohmura, B. Imanishi, M. Ichimura, M. Kawai, Study of deuteron stripping reaction by
coupled channel theory. II properties of interaction kernel and method of numerical solution.
Prog. Theor. Phys. 43, 347 (1970)

27. I.J. Thompson, F.M. Nunes, in Nuclear reactions for astrophysics, Nuclear Reactions for
Astrophysics, ed. by I.J. Thompson, F.M. Nunes (Cambridge University Press, Cambridge,
2009), p. 1

28. L.D. Faddeev, Scattering theory for a three-particle system. Zh. Eksp. Teor. Fiz. 39, 1459
(1960)

29. N. Austern, M. Yahiro, M. Kawai, Continuum discretized coupled-channels method as a trun-
cation of a connected-kernel formulation of three-body problems. Phys. Rev. Lett. 63, 2649
(1989)

30. N. Austern, M. Kawai, M. Yahiro, Three-body reaction theory in a model space. Phys. Rev. C
53, 314 (1996)

31. A. Deltuva, A.M. Moro, E. Cravo, F.M. Nunes, A.C. Fonseca, Three-body description of direct
nuclear reactions: comparison with the continuum discretized coupled channels method. Phys.
Rev. C 76, 064602 (2007)

32. A. Deltuva, Spin observables in three-body direct nuclear reactions. Nucl. Phys. A 821, 72
(2009)

33. A. Deltuva, Deuteron stripping and pickup involving the halo nuclei 11Be and 15C. Phys. Rev.
C 79, 054603 (2009)

34. A. Deltuva, Three-body direct nuclear reactions: nonlocal optical potential. Phys. Rev. C 79,
021602 (2009)

35. N.J. Upadhyay, A. Deltuva, F.M. Nunes, Testing the continuum-discretized coupled channels
method for deuteron-induced reactions. Phys. Rev. C 85, 054621 (2012)

36. W.R. Coker, Gamow-state analysis of 54Fe(d,n) to proton resonances in 55Co. Phys. Rev. C
9, 784 (1974)

37. R. Huby, J.R. Mines, Distorted-wave born approximation for stripping to virtual levels. Rev.
Mod. Phys. 37, 406 (1965)

38. C.M. Vincent, H.T. Fortune, New method for distorted-wave analysis of stripping to unbound
states. Phys. Rev. C 2, 782 (1970)

39. H.B. Jeppesen, A.M. Moro, U.C. Bergmann, M.J.G. Borge, J. Cederkall, L.M. Fraile, H.O.U.
Fynbo, J. Gomez-Camacho, H.T. Johansson, B. Jonson, M. Meister, T. Nilsson, G. Nyman,
M. Pantea, K. Riisager, A. Richter, G. Schrieder, T. Sieber, O. Tengblad, E. Tengborn, M.
Turrion, F. Wenander, Study of 10Li via the 9Li(2H, p) reaction at REX-ISOLDE. Phys. Lett.
B 642, 449 (2006)

40. I.J. Thompson, Computer code FRESCO. Comput. Phys. Rep. 7, 167 (1988)
41. A.M. Moro, R. Crespo, F. Nunes, I.J. Thompson, 8B breakup in elastic and transfer reactions.

Phys. Rev. C 66, 024612 (2002)
42. A.M. Moro, R. Crespo, F.M. Nunes, I.J. Thompson, Breakup and core coupling in

14N(7Be, 8B)13C. Phys. Rev. C 67, 047602 (2003)
43. K. Ogata, M. Yahiro, Y. Iseri, M. Kamimura, Determination of S17 from the 7Be(d,n)8B

reaction. Phys. Rev. C 67, 011602 (2003)
44. B. Zwieglinski, W. Benenson, R.G.H. Robertson, W.R. Coker, Study of the 10Be(d,p)11Be

reaction at 25 MeV. Nucl. Phys. A 315, 124 (1979)
45. S. Fortier, S. Pita, J.S. Winfield, W.N. Catford, N.A. Orr, J.V. de Wiele, Y. Blumenfeld,

R. Chapman, S.P.G. Chappell, N.M. Clarke, N. Curtis, M. Freer, S. Galès, K.L. Jones, H.
Langevin-Joliot, H. Laurent, I. Lhenry, J.M. Maison, P. Roussel-Chomaz, M. Shawcross, M.
Smith, K. Spohr, T. Suomijarvi, A. de Vismes, Core excitation in 11Be(gs) via the p (11Be,
10Be) d reaction. Phys. Lett. B 461, 22 (1999)



66 J. Gómez Camacho and A.M. Moro

46. A.M. Moro, F.M. Nunes, Transfer to the continuum and breakup reactions. Nucl. Phys. A 767,
138 (2006)

47. A.M. Moro, F.M. Nunes, R.C. Johnson, Theory of (d , p) and (p, d) reactions including
breakup: comparison of methods. Phys. Rev. C 80, 064606 (2009)

48. J.S. Winfield, S. Fortier, W.N. Catford, S. Pita, N.A. Orr, J.V. de Wiele, Y. Blumenfeld, R.
Chapman, S.P.G. Chappell, N.M. Clarke, N. Curtis, M. Freer, S. Galès, H. Langevin-Joliot,
H. Laurent, I. Lhenry, J.M. Maison, P. Roussel-Chomaz, M. Shawcross, K. Spohr, T. Suomij,
Single-neutron transfer from 11Begs via the (p, d) reaction with a radioactive beam. Nucl.
Phys. A 683, 48 (2001)



Chapter 3
What Can We Learn from Transfer, and How Is
Best to Do It?

Wilton N. Catford

3.1 Motivation to Study Single-Nucleon Transfer Using
Radioactive Beams

A single-nucleon transfer reaction is a powerful experimental tool to populate a cer-
tain category of interesting states in nuclei in a selective manner. These states have
a structure that is given by the original nucleus as a core, with the transferred nu-
cleon in an orbit around it. Nucleon transfer is thus an excellent way to probe the
energies of shell model orbitals and to study the changes in the energies of these or-
bitals as we venture away from the stable nuclei. Despite a large number of detailed
issues that complicate this simple picture, it remains the case that nucleon transfer
reactions preferentially populate these “single particle” states in the final nucleus
and also that these states are of especial interest, theoretically. Therefore, transfer
reactions promise to be one of the most important sources of nuclear structure in-
formation about exotic nuclei, as more beams become available at radioactive beam
facilities.

The factors that complicate the interpretation of the experiments arise primarily
from the theoretical interpretation of the data. Experimentally, the selectivity of the
transfer reactions is usually clear, and the states of interest—those having a large
overlap with the simple core-plus-particle picture—are emphatically favoured. Of-
ten, these states will be embedded within a background of other nuclear levels. This
selectivity on structural grounds is itself useful, and often allows immediate asso-
ciations to be inferred between experimentally observed states and the predictions
from, for example, shell model calculations. The states that are suppressed will have
more complex wave functions that mix a number of configurations and are intrinsi-
cally more difficult to describe theoretically. In the first instance, it is in many ways
best to focus upon the more simple states that are selected by transfer reactions,

W.N. Catford (B)
Department of Physics, University of Surrey, Guildford GU2 7XH, UK
e-mail: w.catford@surrey.ac.uk

C. Scheidenberger, M. Pfützner (eds.), The Euroschool on Exotic Beams, Vol. IV,
Lecture Notes in Physics 879, DOI 10.1007/978-3-642-45141-6_3,
© Springer-Verlag Berlin Heidelberg 2014

67

mailto:w.catford@surrey.ac.uk
http://dx.doi.org/10.1007/978-3-642-45141-6_3


68 W.N. Catford

Fig. 3.1 The effective
energies of the valence
neutron orbitals are modified
according to the number of
protons present in the 0d5/2
orbital. The effect is to
replace the N = 20 neutron
shell gap by a gap at N = 16
when the nucleus becomes
more exotic

and to use these to refine the theory. Complications begin to arise when we seek to
quantify the degree to which the wave function of a particular state overlaps with the
simple core-plus-particle wave function. At that level, many debates occur, regard-
ing the quantitative interpretation of data. With suitably stated assumptions, how-
ever, quantitative analyses of experiments can be performed and confronted with
theory. Thus, on a qualitative and on a quantitative level, transfer reactions provide
an indispensable tool for uncovering the structures of exotic nuclei.

3.1.1 Migration of Shell Gaps and Magic Numbers, Far
from Stability

Figure 3.1 shows a simplified representation of the proton and neutron shell model
orbital energies and occupancies for some light nuclei. In the nuclear shell model,
each nucleon is assumed to occupy an energy level (or orbital) that can be obtained
by solving the Schrödinger equation for a mean field potential. This potential repre-
sents the average binding effect of all of the other nucleons. In the simplest model,
the nuclear structure is obtained by filling orbitals from the lowest energies, obey-
ing the Pauli exclusion principle. In a more sophisticated model, the interactions
between valence nucleons in different orbitals (or in the same orbital) are taken
into account. This allows significant mixing between different simple configura-
tions that all have the same spin and parity and about the same (unmixed) energy.
Some degree of mixing will even occur over a wide range of configuration energies.
In principle the valence nucleon interaction energies, which can be represented as
matrix elements in some suitable basis, can be calculated from the solutions for
the mean field and an expression for the nucleon-nucleon interaction (with all of
its dependence on spatial variables, spin and orbital angular momentum). In prac-
tice, the best shell model calculations in terms of agreement with experimental data
are those in which the calculated matrix elements are subsequently varied by fitting
them to a selection of experimental data, thus establishing an effective interaction
that is valid in a particular model space that was used for the fitting procedure.
Once we accept that valence nucleons will have an interaction potential, and hence
some energy associated with the interaction, it naturally becomes possible that the
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valence interactions can actually change to some degree the effective energies of
the orbitals themselves. Slightly more technically, the interaction potentials can be
analysed in terms of a multipole expansion. It is the monopole term in the expan-
sion that has the effect of changing the effective energies of orbitals. The energy
of a single valence nucleon in a particular orbital is determined by the energy of
the orbital plus the sum of the monopole components of its interaction with other
active valence nucleons. A closed shell has no net effect, so it is the interactions
with partially filled orbitals that needs to be considered. Whilst both the interactions
between like nucleons (p–p) or (n–n) and interactions between different nucleons
(p–n) are all important, the strongest effects occur when it is a proton-neutron inter-
action between active valence nucleons. After that, the strongest effects are between
orbitals of the same number of radial nodes, and then if the angular momentum
is the same this makes the effect is even stronger. This arises from the degree of
spatial overlap of the wave functions. For example, the interaction between pro-
tons in an open 0d5/2 orbital and neutrons in an open 0d3/2 orbital is particularly
strong.

In Fig. 3.1, the structure of the N = 14 isotones is shown, with the additional
odd neutron for N = 15 being shown in an otherwise vacant 0d3/2 orbital. The
0d5/2 neutron orbital is filled, at N = 14. On the right hand side, we see the stable
nucleus 28Si, wherein the 14 protons also fill the proton 0d5/2 orbital. The 3/2+
state in 28Si is therefore at a relatively low energy, because the sd-shell orbitals
are relatively closely spaced, all lying below the N = 20 shell gap. As succes-
sive pairs of protons are removed from 0d5/2, the diagram indicates that the en-
ergy of the 0d3/2 orbital increases. This is actually in accord with detailed calcu-
lations and can be understood in terms of the monopole interaction [1, 2] and a
version of this diagram can be found in Ref. [1]. By the time we reach the neu-
tron rich 22O, the 0d3/2 orbital has risen to such an extent that the shell gap is
now below that orbital, at N = 16. The orbital that has moved up in energy has
j = �− 1/2 and the reason for its change is that there are fewer protons in 0d5/2

(where j = �+ 1/2) with which a valence d3/2 neutron can interact. This proton-
neutron interaction between � + 1/2 and � − 1/2 nucleons is attractive [1], and
hence this reduction in 0d5/2 protons causes the raising in energy of the neutron
0d3/2 orbital. This is, in fact, essentially the explanation for 24O being the heavi-
est bound oxygen isotope (with the neutrons just filling the 1s1/2 orbital). Neutrons
in the 0f7/2 and 1p3/2 orbitals, with j = � + 1/2, experience a repulsive interac-
tion with the 0d5/2 protons and hence they are lowered in energy as these protons
are removed. This further confounds the previous N = 20 gap seen for nuclei near
stability, and also tends to displace the N = 28 gap to a higher number (N = 34).
In the present work, several of the example nuclei studied using transfer (25,27Ne,
21O) are directly of interest because of this particular migration of orbital energies.
What we measure experimentally are the energies of actual states in these nuclei,
and not the energies of the shell model orbitals per se, but there is a strong connec-
tion between the energies of the states and the orbitals in the cases that are studied
here.
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Fig. 3.2 Neutron structure
for states in 21O: (a) a
low-lying 3/2+ state can be
made by transferring a
neutron into the vacant 0d3/2
orbital, or (b) by having a
neutron in 1s1/2 coupled to a
2+ 20O core, where the two
holes in 0d5/2 are coupled to
spin 2

3.1.2 Coexistence of Single Particle Structure and Other
Structures

Of course, it is not the case that all of the excited states in the final nucleus will have
a structure that is simply explained by a neutron orbiting the original core nucleus.
Such states are an important but (usually) small subset of the states in the final
nucleus, and are selectively populated by transfer reactions. To measure the energy
of the 0d3/2 neutron orbital, say, in 21O we could imagine an experiment to add a
neutron to 20O and then deduce the energy of the 3/2+ excited state, and hence the
0d3/2 orbital energy relative to the 0d5/2 orbital of the ground state. This is shown
conceptually in Fig. 3.2(a). In the lowest energy configuration, the two holes in the
neutron 0d5/2 orbital are coupled to spin zero. This association of the energy of the
state directly with that of the orbital is overly simplified because the state will not
have a pure configuration. In Fig. 3.2(b), another relatively low energy configuration
is shown, which also has spin and parity 3/2+. Here, the holes in 0d5/2 are coupled
to spin 2, as they are in the 2+ state of 20O. A neutron in 1s1/2 can then couple with
this to produce two states in 21O, one of which is 3/2+. The residual interactions
between valence nucleons will mix these two configurations and the nucleus 21O
will have the single particle amplitude split between the two states. Indeed, in the
real nucleus, there will be even more components contributing to the wave functions
with various smaller amplitudes.

3.1.3 Description of Single Particle Structure Using Spectroscopic
Factors

Due to the mixing of different states with the same spin and parity, the single parti-
cle state produced by a nucleon orbiting the core of the target, in an otherwise va-
cant orbital, will be mixed with other nuclear states of different structures. Usually,
these will be of more complex structures, or core excited structures. The contribu-
tion that this single particle amplitude makes, to the different states, will result in
these states all being populated in a nucleon transfer reaction. The strength of the
population of each state in the reaction will depend on the intensity of the single
particle component. This intensity is essentially the quantity that is called the spec-
troscopic factor. Experimentally, it is measured by taking the cross section that is
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Fig. 3.3 Spectroscopic factor
versus excitation energy for
3/2− (red) and 1/2− (blue)
states in 41Ca. The strength
for a given spin is split
between different states in the
final nucleus. This figure is
due to John Schiffer [3].
Here, we have added the inset
to indicate schematically how
the weighted average of the
3/2− excitation energies can
be calculated, which gives a
measure of the energy of the
1p3/2 single particle orbital

calculated for a pure single particle state and comparing it to the cross section that is
measured. More specifically, this comparison is performed using differential cross
sections, which are a function of the scattering angle. If the picture described here is
correct, then the experimental cross section should have the same shape as the the-
ory, and simply be multiplied by a number less than one—that is, the spectroscopic
factor. To describe the sharing of intensity between states, we say that the single
particle strength will be spread across a range of states in the final nucleus. This is
represented in Fig. 3.3, where the single particle strength (represented as the spec-
troscopic factor) is plotted as a function of excitation energy. The weighted average
of the excitation energies, for all states containing strength from a particular �j or-
bital, will give the energy of that orbital. Note that, for experiments with radioactive
beams, the limited intensity of the beam is likely to preclude the possibility of iden-
tifying and measuring all of the spectroscopic strength, which was traditionally the
aim of transfer experiments. A different approach will often be dictated by these
circumstances, wherein only the strongest states are located experimentally. Then,
placing more reliance on theory than was formerly done, an association can be made
between the strong states experimentally and the states predicted by the theory to
be the strongest. We then need to see whether the experimental data, in terms of the
energies and spectroscopic factors for the strongest states, can give us enough clues
about how to adapt the theoretical calculations to give an improved set of predic-
tions. If applied consistently across a range of nuclei, using the same theory, this
approach can reasonably be expected to yield good results.

3.1.4 Disclaimer: What This Article Is, and Is Not, About

This article is intended to describe briefly the general motivations for studies using
(mostly) single nucleon transfer, and to provide in some detail the background, in-
sights and perspectives relevant to designing and performing the experiments. For
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more details about the nuclear structure motivations in terms of nuclear structure
and monopole shift the reader is referred to several excellent reviews [4–6].

This article most definitely does not seek to summarise or describe the theories
that are used to interpret the data from nucleon transfer reactions, although some
general features of the theoretical predictions are discussed and a justification is
given for the model of choice for the examples of analysis that are described here.
Detailed descriptions of the relevant reaction theory can be found in several well-
known articles and books, such as those by Glendenning [7, 8] and Satchler [9, 10].
An excellent and up-to-date introduction and overview with particular reference to
weakly bound and unbound states is given in this volume by Gómez Camacho and
Moro [11].

With regard to the experimental results, although the main objectives of most of
these measurements is to obtain the differential cross sections for individual final
states, just a small number of illustrative results are shown here. In all of the discus-
sions, the references are given for the original work, and it is to those publications
that reference may be made in order to study the extent and quality achieved for
the various differential cross section measurements. It is through the measurement
and interpretation of these differential cross sections that the assignments of angular
momentum and determinations of spectroscopic single-particle strength are made,
for the nuclear states.

3.2 Choice of the Reaction and the Bombarding Energy

In this section, some features of transfer reactions as traditionally performed using
stable targets and a low-mass beam (for example, the (d,p) reaction) are reviewed.
Some of the differences in the case of inverse kinematics are introduced.

3.2.1 Kinematics and Measurements Using Normal Kinematics

A good way to measure (d,p) reactions when using a beam of deuterons and a stable
target is to use a high resolution magnetic spectrometer to record the protons from
the reaction, because this can be done with a high precision and a low background.
The proton peaks observed at a particular angle will have different energies for
different excited states and hence will be dispersed across the focal plane of the
spectrometer. The spacings of the proton energies will be almost the same as the
spacings of the energy levels in the final nucleus. An example of the kinematical
variation of proton energies with laboratory angle is shown in Fig. 3.4. The lines that
are almost horizontal are calculations of the proton energies from the (d,p) reaction
on a 208Pb target, with the uppermost being for protons populating the ground state
of 209Pb. The energies have little variation with laboratory angle because the very
heavy recoil 209Pb nucleus takes away very little kinetic energy. The uppermost line,
with a much bigger slope, is for the (d,p) reaction on a much lighter target, 12C.
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Fig. 3.4 Kinematics plots showing proton energy as a function of laboratory angle for the reaction
(d,p) initiated by 20 MeV deuterons. Different curves represent the population of different excited
states formed by reactions on 208Pb, 12C and 16O (see text). The angle 53.75◦ is relevant to Fig. 3.5

The lines of intermediate slope are for the (d,p) reaction on a target of 16O. The
energy at zero degrees is different for the different targets because of the different
reaction Q-values, whereas the slopes reflect the target mass. The carbon and oxygen
calculations are shown, because these isotopes are typical target contaminants. In a
study of 208Pb(d,p)209Pb, the contaminant reactions will give proton energies that
overlap the energy region of interest for the 209Pb states, but these can be identified
by comparing data taken at different laboratory angles, since the contaminant peaks
will shift in energy, relative to the 209Pb peaks. The example of the proton energies
seen in a measurement made at 53.75◦ is shown in Figs. 3.4 and 3.5.

The peaks corresponding to different final states in 209Pb, measured at 53.75◦ for
the (d,p) reaction [12], are shown in Fig. 3.5. The different intensities reflect both
the spectroscopic strengths and the dynamical effects of different angular momen-
tum transfers. It is apparent that different states can easily be resolved and studied.
The peaks in the shaded region of Fig. 3.5 correspond to the reactions populating
the ground states of 17O and 13C from the oxygen and carbon contamination in the
target. At increasing laboratory angles, these peaks would be seen to move to the
left in the spectrum, relative to the 209Pb peaks.

3.2.2 Differential Cross Sections: Dependence on Beam Energy
and � Transfer

The principal piece of information (after excitation energy) that is measured di-
rectly, via transfer studies, is the orbital angular momentum that is transferred to the
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Fig. 3.5 Magnetic spectrometer data for protons from 208Pb(d,p)209Pb at a beam energy of
Ed = 20.0 MeV and a laboratory angle of 53.75◦. Data are from Ref. [12]. Excitation energy
increases from right to left and the unshaded peaks correspond to states in 209Pb. The shaded
region is where reactions on the 12C and 16O in the target produce contaminant peaks

Fig. 3.6 A consideration of the conservation of linear momentum in transfer implies a relationship
of the laboratory scattering angle to the transferred momentum, and therefore to the transferred
orbital angular momentum, �. This implies that the location of the primary maximum in the angular
distribution will be approximately proportional to the transferred � (see text)

target nucleus. This comes from the shape of the differential cross section. Next,
the magnitude of the cross section can tell us the magnitude of the single-particle
component of the wave function, or the spectroscopic factor.

The transferred angular momentum will indicate, for single-nucleon transfer, into
which orbital the nucleon has been transferred. The transferred angular momentum
is measured via the angular distribution of the reaction products. In this type of
reaction, the differential cross section will tend to have some diffraction-like oscil-
latory behaviour, with the angle of the main maximum being related to the magni-
tude of the transferred angular momentum. We can see how the transferred angu-
lar momentum affects the angular distribution by considering a simple momentum
diagram. Suppose as in the inset of Fig. 3.6 that the incident projectile has mo-
mentum of magnitude p and that the momentum transferred to the target nucleus
has magnitude pt . For a small scattering angle, θ , the beam particle will have only
a small reduction in the magnitude of its momentum, as seen by construction of
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Fig. 3.7 Differential cross sections for single nucleon transfer in (a) 32Mg(d,p)33Mg, and
(b) 132Sn(d,p)133Sn. The three panels in each case are for three different bombarding energies,
namely 5, 10 and 20 A MeV. Each panel shows calculations for several different �-transfers. The
ADWA model was used (see text, Sect. 3.2.3). These plots are in terms of the centre of mass
reaction angle, θc.m.

the vector diagram for momentum conservation (cf. Fig. 3.6). From the applica-
tion of the cosine rule to this triangle, the formula for θ2 as shown in the Figure
can be derived, where we make use of the expansion to second order for cosine:
2(1− cos θ)≈ 2(1− [1− θ2/2!])= θ2. From inspection of the diagram, the reduc-
tion δ in the length of the p vector is small compared to the magnitude of the actual
transferred momentum, pt . Hence, we can drop the terms in (δ/p) in the expression
for θ2 and we obtain θ2 ≈ (pt/p)2. If the nucleon is transferred at the surface of
the target nucleus, which has radius R, then the transferred angular momentum � is
given by pt × R =√

�(�+ 1)�. This immediately indicates that θ ≈ constant × �,
and in a full quantum mechanical treatment we will not see a single angle but can
expect a peak to occur in the differential cross section, at a laboratory angle that is
approximately proportional to the transferred angular momentum, �. This is shown
schematically in Fig. 3.6, which also includes the diffractive effects in a schematic
fashion. In fact, for deuterons incident at a kinetic energy of E (MeV) on a target
of mass A this simple picture gives θ(degrees)≈ 217/(

√
E ×A1/3)×√

�(�+ 1).
For 20 MeV deuterons incident on a target of mass 32, the constant term evaluates
to 15◦, which of course can serve only as a guide, but is in reasonable agreement
with the trend in the primary maxima observed in the middle panel of Fig. 3.7(a)
which shows proper calculations for (d,p) on 32Mg at 10 A MeV. The Figure is ac-
tually plotted in terms of θc.m., but would look very similar when plotted in terms of
θlab for normal kinematics (which refers to the situation where the target is heavier
than the projectile). The preceding discussion of the vector diagram is adapted from
reference [13].

Calculations are shown in Fig. 3.7 for various �-transfers at several different
bombarding energies, and for two different targets. The first point to note is that
the shapes of the distributions for different �-transfer are distinctive, especially for
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Fig. 3.8 As for Fig. 3.7, but in terms of the laboratory angle for the detected proton. In this
reference frame, the extreme right of each panel corresponds to the point at the extreme left of the
panels in Fig. 3.7

10 A MeV (the middle panels). For the light nucleus 32Mg, the 5 A MeV distribu-
tions are also characteristic of the transferred �. For the heavier 132Sn target, the
distributions are less distinctive due to the forward angle parts (small θc.m.) being
suppressed. This is due to the Coulomb repulsion between the projectile and the
target, which means that the small angle scattering (especially) has a suppressed
nuclear component. In addition to the above considerations, there is a general trend
towards lower cross sections as the bombarding energy increases, of around half to
one order of magnitude per 10 A MeV. Taken together, this information suggests that
10 A MeV is an ideal bombarding energy for this type of study, and this can be re-
laxed down to 5 MeV perhaps, for lighter nuclei. The remaining question is whether
the existing theories are equally valid at all energies, and the ADWA model used
here (see Sect. 3.2.3) should have good validity at both 5 and 10 A MeV, although
probably not at energies much lower than this.

The aim of a typical nucleon transfer experiment is to measure the differential
cross sections for different states in the final nucleus. From the shape of the cross
section plot, the transferred angular momentum can then be deduced. The calcula-
tions shown in Fig. 3.7 are for pure single-particle states. That is, it is assumed that
the structure of the final state is given perfectly by the picture of the target core with
the transferred nucleon in an associated shell model orbital. Hence, another impor-
tant experimental result will be the scaling factor between the theoretical calculation
and the data, which will give the experimental value for the spectroscopic factor.

If experiments are performed in normal kinematics, with a deuteron beam, then
the cross sections will look much like Fig. 3.7 whether we plot them in terms of
the centre of mass angles or the laboratory angles. However, in reality the isotopes
32Mg and 132Sn used in these examples are radioactive and the experiments need to
be performed in inverse kinematics: where the deuteron is the target and the heavier
particle is the projectile. In Fig. 3.8, the same calculations as in Fig. 3.7 are plotted,
but using the laboratory angles and assuming an inverse kinematics experiment. The
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same relative velocities of beam and target, i.e. the same values of the beam energy
in MeV per nucleon, are employed. It can be seen that the structure characteristic of
� is maintained, for the cases where it was previously evident. The transformation
takes zero degrees in the centre of mass frame to 180◦ in the laboratory frame.
Now, the first peak observed relative to 180◦ is further from 180◦ as the �-transfer
increases. From inspection, an experimental measurement should include at least
the region from 90◦ to 180◦ in order to allow an assignment of the transferred �
according to the observed shape of the distribution. The situation with the heavier
target is more problematic, especially at the lowest energy shown here.

The transformation from the centre of mass to the laboratory reference frame, and
in particular the transformation of the solid angle, is discussed further in Sect. 3.3.2.

3.2.3 Choice of a Theoretical Reaction Model: The ADWA
Description

The perfect theoretical model to interpret experimental data for transfer reactions
does not exist. The scattering theory is most often treated in an optical model ap-
proach, where the scattering potential is complex and has attractive and absorptive
components. As in optical light being scattered from a cloudy crystal sphere, the loss
of flux (by whatever process) is represented mathematically by the imaginary part of
the potential. Most often, but not of necessity, the final state populated in a reaction
such as (d,p) is represented as a core (being the original target nucleus) with the
transferred nucleon in an eigenstate of the potential that arises due to the core. This
implies a perfect single-particle structure for the final state, and the ratio between the
experimental and theoretical cross sections is then the spectroscopic factor, as previ-
ously discussed. The simplest scattering theory, described in introductory quantum
mechanics texts (for example Ref. [14]), is in terms of a plane wave Born approx-
imation (PWBA). An improved model [14] replaces the plane waves by the wave
solutions that are distorted by the presence of the scattering potential, giving the dis-
torted wave Born approximation (DWBA). Even though transfer has been a widely
used and valuable tool in nuclear spectroscopy for well over 50 years, there are still
new and important developments occurring in quite fundamental aspects of the the-
ory. One aspect of this concerns the spatial localisation of the transferred nucleon
in the projectile and the final nucleus, or what is known as the form factor. Another
important aspect, particularly for the (d,p) reaction, concerns the coupling to con-
tinuum states. Because the deuteron is weakly bound, it very easily disintegrates in
the field of the target nucleus when used as a projectile. When the (d,p) reaction is
applied to weakly bound exotic nuclei, the problem also occurs for the final nucleus.
What is more, the coupling is not necessarily one-way: continuum states can cou-
ple back to the bound state, which can have important effects on the reaction cross
section. One way to take this into account is via coupled reaction channels (CRC)
calculations, in which all of the different contributing reaction pathways are explic-
itly included in the calculation. In order to include the continuum contribution, the
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theory usually considers hypothetical energy bins in the continuum and treats them
as different states that can couple into the intermediate stages of the reaction. These
are coupled discretized continuum channels (CDCC) calculations. The challenges
of such calculations are many, including the computational power required and the
choices of parameters for the various coupling strengths.

An ingenious analytical short-cut to include continuum contributions was de-
veloped by Johnson and Soper [15]. In the scattering process, the neutron and the
proton inside the deuteron have complex histories, and in particular when contin-
uum states for the neutron are included—that is, deuteron or final-nucleus breakup.
The Johnson-Soper method relied on the observation that certain integrations over
all spatial coordinates are dominated by the contributions wherein the neutron and
proton are within a range determined by the neutron-proton interaction. Within a dis-
torted wave formulation, certain energy differences are ignored, which means that
the approximations of the model become less applicable at lower beam energies.
However, at 5 to 10 A MeV they should remain substantially valid. The coupling to
the continuum, subject to these approximations, is included exactly and to all orders
by means of the simplified integrations. This theoretical method has become known
as the adiabatic distorted wave approximation, or ADWA. A convenient feature is
that the calculations are largely identical (but with different input) to those required
for the DWBA, and hence the pre-existing DWBA computer codes can be adapted
to perform ADWA calculations. The DWBA remains another popular choice for
the analysis of transfer reactions. Descriptions can be found, for example, in the
articles and books by Glendenning [7, 8] and Satchler [9, 10]. The DWBA uses
imaginary potentials to take into account the loss of reaction flux from the elastic
channel, which allows for deuteron breakup but not for a proper two-way coupling
with the continuum. The extensions via CDCC are computationally intensive and
often incomplete in terms of the contributing physics. Therefore, the ADWA has
important advantages in the case of (d,p) reactions and is adopted for all such anal-
ysis in the present work. The calculations are performed using a version of the code
TWOFNR [16]. The ADWA method has recently been refined to take into account
the zero-point motion of the neutron and proton inside the bound deuteron [17].

3.2.4 Comparisons: Other Transfer Reactions and Knockout
Reactions

In the discussion in this article the emphasis is on single-nucleon transfer, and pri-
marily (d,p) reactions, studied in inverse kinematics with radioactive beams. In
terms of physics, the aim which is emphasised is the understanding of single par-
ticle structure and the evolution of shell orbitals and shell gaps as nuclei become
more exotic. There are certainly other types of transfer reaction and other ways with
which to probe single particle structure. Some of those topics are briefly described
here. This article aims to identify the experimental challenges and techniques of
transfer reaction studies, rather than to provide a review of all such studies in the
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literature; some more details of other work can be found, for example, in Ref. [18]
or in other papers by many of the groups cited in Sect. 3.4.

Nucleon removal reactions include (p, d) and (d, t) which are discussed in
Sects. 3.4.1 and 3.4.8 respectively, and (d, 3He). An alternative to the first two is
(3He, α) whilst an alternative to (d,p) is (α, 3He). The choice of which reaction
to use should not be random. The helium-induced reactions will generally show a
different selectivity due to the different reaction Q-value, and could be chosen to
highlight higher-� transfers. In terms of the discussion in Sect. 3.2.2, a more neg-
ative Q-value will reduce the kinetic energy in the exit channel so that the exiting
particle takes away less orbital angular momentum than it brings in. This will tend
to favour the higher �-transfers. In practice, the helium-induced reactions are harder
to study using radioactive beams. No simple and thin solid helium target exists, so
it is necessary either to use a gas target (a windowed cell, or a differentially pumped
jet) or an implanted helium-in-metal target or a cryogenic target. Each has its own
challenges, but can be built and will find an increased application in the future.

Another important type of transfer reaction is when a cluster is transferred. It is
always the case that when multiple particles are transferred then the process could
be single-step (when the whole cluster is preformed and is transferred) or could
have two or even more steps involved. Multiple-step processes are modelled the-
oretically using coupled reaction channel (CRC) extensions of the DWBA. In the
case of heavy-ion transfer, they can also be modelled semiclassically, as mentioned
in Sect. 3.5.2. Traditionally, anything heavier than helium is called a heavy ion, and
two heavy-ion induced transfer reactions of particular importance are (6Li, d) and
(7Li, t), which transfer an α-particle. Various heavy-ion transfer reactions, includ-
ing α-transfer, are discussed for example in Ref. [19].

The simplest form of cluster transfer is probably the (t,p) reaction in which
the transfer of two neutrons, coupled to spin and relative orbital angular momen-
tum zero, is the dominant mechanism. These can carry various amounts of angular
momentum with them as a cluster, into the final nucleus. Experimentally, it is a chal-
lenging reaction: historically, the tritium nucleus was the projectile and would pose
particular problems due to its radioactivity, and with the advent of radioactive beams
the tritium has to be incorporated into a compact target and then be bombarded,
which potentially poses even greater problems. Nevertheless, these problems have
been solved in a study of shape coexistence in 32Mg via the (t,p) reaction in in-
verse kinematics [20]. The beam was 5×104 pps of 30Mg at 1.8 A MeV at ISOLDE,
CERN. This experiment used the T-REX array which is described in Sect. 3.4.2. The
target was a foil of titanium metal (500 µg/cm2) into which 40 µg/cm2 of 3H had
been absorbed. There was a ratio of ≈1.5 of hydrogen atoms to lattice Ti atoms,
giving a radioactivity of the target of 10 GBq. For stable targets, the (t,p) reac-
tion tends to have a large positive Q-value. For the more neutron-rich radioactive
isotopes, such as 30Mg, the Q-value drops to be close to zero but the kinematics
remain quite similar to (d,p), which is discussed in Sect. 3.3.1.

With the advent of radioactive beams at the extremes of measured nuclear ex-
istence, obtained via intermediate and high energy fragmentation reactions at lab-
oratories such as MSU, GANIL, GSI and RIKEN, a new type of nucleon removal
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reaction was developed and exploited. This type of reaction is sometimes called a
knockout reaction, but it is completely separate from true knockout reactions such
as (e, e′p) and (p,p′p). The nucleus in the beam is incident on a light target nu-
cleus that acts like a black disk and ideally cannot be internally excited without
disintegrating—the usual choice is 9Be. The experimental requirement is that the
projectile survives the reaction, with just the single nucleon removed, and this auto-
matically selects very peripheral collisions. The black disk essentially erases some
part of the tail of the wave function of the removed nucleon [21]. This method, which
was originally developed to study the ground states of halo nuclei, provides another
way in which to study the single particle structure of nuclei. Nucleon removal from
the ground state of a projectile simultaneously studies the structure of the projectile
state and the structure of the final nucleus. Individual states in the final nucleus can
be identified using gamma-ray spectroscopy. The angular momentum transfer and
the spectroscopic factor are deduced, respectively, from the width of the longitu-
dinal momentum distribution of the beam fragment and from the magnitude of the
cross section. A very successful method of analysing these reactions was developed
using high-energy Glauber approximations that were previously used to describe
high energy deuteron-induced reactions (the deuteron being the archetypal halo nu-
cleus) and this theory is outlined in Ref. [22], with a more extensive discussion of
results in the review of Ref. [23]. A currently very topical result from the extensive
studies using knockout reactions is the apparent quenching of single-particle spec-
troscopic factors relative to the predictions of large-basis shell model calculations
[24]. The quenching appears to be correlated with the binding energy of the removed
nucleon, which suggests some connection with higher-order correlations of nucle-
ons, coupling to configurations outside of the shell model basis. Various different
explanations have been advanced for this effect, for example those in Refs. [25–
27]. The observations appear to be consistent with previously observed quenching
of spectroscopic strength in stable nuclei using (e, e′p). One way to investigate this
for radioactive nuclei, and also to check the reaction dependence, is via (p,p′p)
knockout reactions such as those performed in Japan [28] and GSI [29]. Another
is to compare neutron and proton knockout with results from (d, t) and (d, 3He)
studies, as has been performed for the neutron deficient 14O nucleus [30].

3.3 Experimental Features of Transfer Reactions in Inverse
Kinematics

This section addresses some simple and rather general features of reactions such
as (d,p) and (p, d) when studied in inverse kinematics. Instead of the centre of
mass frame being almost at rest in the laboratory frame, as in normal kinematics
experiments, the centre of mass frame moves with nearly the beam velocity. The
kinematical variation of energy with angle therefore bears no resemblance to the
situation for normal kinematics shown in Fig. 3.4. In a (d,p) or (p, d) reaction,
the mass of the light (target) particle is substantially changed by the transfer, being
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Fig. 3.9 Classical velocity
addition diagram for elastic
scattering in inverse
kinematics, showing that the
light (target) particles emerge
at angles just forward of 90◦
for small centre of mass
scattering angles

halved in (d,p) or doubled in (p, d). This in itself turns out to be a major factor
in determining the two-body kinematics of the reaction. In order to illustrate this,
it is convenient to use velocity addition diagrams, where we add the velocities of
particles as measured in the centre of mass frame to a vector representing the ve-
locity of the centre of mass frame in the laboratory. The resultant vectors give the
velocities of the final particles in the laboratory frame, and of course this is using
the Galilean transformation and thus is strictly correct only for non-relativistic situ-
ations. This is no great problem if we are working at the energies of order 10 A MeV
that were suggested in Sect. 3.2.2. The discussion in the following section follows
that in Ref. [31].

3.3.1 Characteristic Kinematics for Stripping, Pickup and Elastic
Scattering

The vector diagram describing elastic scattering in inverse kinematics is shown in
Fig. 3.9. The velocity of the centre of mass in the laboratory frame is given by a
large fraction of the beam velocity, since the target is light. Measured in the centre
of mass frame, taking into account conservation of momentum, we can also note that
the velocities of the two particles after the collision must be in inverse proportion to
their masses. Thus, the target-like particle has a velocity υc.m.

target that is much greater
than that of the beam-like particle in this frame. This is shown in the Figure by the
red dashed vectors. Furthermore, the target particle is initially at rest and hence the
length of the target-like vector υc.m.

target is equal to the length of the centre of mass

velocity as measured in the laboratory frame, υ lab
c.m.. The scattering angle as mea-

sured in the centre of mass frame is given by the angle enclosed between υ lab
c.m. and

υc.m.
target, indicated by θ in Fig. 3.9. For a scattering angle of zero in the centre of mass

frame, the light particle in the final state is stationary. For small scattering angles
(where the cross section is highest, for elastic scattering) the light particles emerge
just forward of 90◦ and with a velocity (energy) that increases approximately lin-
early (quadratically) with centre of mass angle. Also, the centre of mass angle is



82 W.N. Catford

Fig. 3.10 Velocity addition diagrams (a) for a typical pickup reaction such as (p, d) or (d, t), and
(b) for a typical stripping reaction such as (d,p). Certain assumptions about the beam energy and
the reaction Q-value are described in the text

simply twice the difference between the laboratory angle and 90◦ in this classical
approximation, since the velocity addition triangle is isosceles. The beam particle
continues in the forward direction with little change in either energy or direction.
In the case of backscattering in the centre of mass frame, the light particles travel
rapidly in the direction of the incoming beam, and the beam particle also continues
in that direction, being just slightly slowed down. An important result here, of ex-
perimental significance, is that elastically scattered target particles will be detected
just forward of 90◦ and their energies will increase rapidly with angle. In general,
they will require a thick detector for them to be stopped and their energy measured
precisely.

The vector diagrams describing reactions in which there is pickup of a nucleon
by the light particle, or stripping of a nucleon from the light particle are shown in
Fig. 3.10 (adapted from Ref. [31]). The lengths of the vectors in these diagrams
are given in terms of the masses involved, and the reaction Q-value, by formulae
included in Refs. [31, 32]. As shown by those formulae, the diagrams shown here
implicitly assume a small reaction Q-value, or at least that the Q-value in units of
MeV is small compared to the energy of the beam as expressed in MeV per nucleon.
Especially for reactions involving exotic neutron rich projectiles, the Q-values for
neutron addition or removal will typically be small, and similarly for a reaction such
as (d, 3He) on the proton-rich side of the nuclear chart.

In the case of a reaction such as (p, d), corresponding to Fig. 3.10(a), it is easy
to obtain a rough estimate of the length of the light particle vector in the centre of
mass, labelled υe in the figure. Firstly, the heavy particle is going to continue with
little change in velocity or direction, much as in the case of elastic scattering. Now,
the centre of mass vector in elastic scattering was required to be the same length
as the centre of mass velocity vector in the laboratory frame, denoted by υcm in
Fig. 3.10. In the case of (p, d), the mass of the light particle is doubled relative to
the elastic scattering situation, but the momentum that this particle must carry in the
centre of mass frame is about the same as in the elastic case, which follows from the
remark about the velocity of the beam particle. Thus, this vector υe is about half the
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length of υcm. The precise value depends upon the reaction Q-value of course, but
the basic form of the vector diagram is always the same, subject to the assumptions
mentioned above. The result is that the light reaction products are forward focussed
into a cone of angles or around 40◦ relative to the beam direction. There will be
two energy solutions for each angle, within this cone, wherein the lower energy
corresponds to the smaller centre of mass reaction angle and hence (typically) the
higher cross section. The low energy solution may be very low indeed, in energy.

In the case of a reaction such as (d,p), corresponding to Fig. 3.10(b), the mass of
the light particle is halved in the reaction and hence its velocity vector in the centre
of mass frame is approximately doubled in length, in the approximate picture. The
small centre of mass angles (and typically the higher cross section) will correspond
to light particles that emerge travelling opposite to the beam direction. They will
have energies that may be quite low, and will increase in energy all the way to zero
degrees in the laboratory frame, which corresponds to a centre of mass angle of
180◦. For reactions that populate an excited state in the final nucleus, there will be
less energy available in the final state than for the ground state, and hence the vectors
in the centre of mass are shorter and the laboratory energies of the light particle will
be lower than for the ground state, at all laboratory angles.

When planning an experiment in inverse kinematics, it can be useful to construct
a velocity addition diagram such as those in Fig. 3.10. It allows an intuition about
the reaction kinematics to be gained, easily. The form of the diagram depends only
on the ratio of the length of υe to that of υcm. This ratio is given [31] by

υe

υcm
=

(
qf
MR

MP

)1/2

≈√
qf ifMR ≈MP

where the masses of the projectile and recoil are denoted by MP and MR . The
quantity f is related to the change in mass of the target particle, f =MT /Me where
MT andMe are the masses of the target and light ejectile respectively. The quantity
q is of order unity but has a Q-value dependence and typically varies between 1 and
1.5. Specifically, q = 1+Q/Ecm whereQ=Qg.s.−Ex for an excited state andEcm
is the kinetic energy in the centre of mass frame. Given that the target is much lighter
than the projectile, most of the kinetic energy in the centre of mass frame is carried
by the target particle, so Ecm ≈MT (E/A)beam. Then q ≈ 1 +Q/2(E/A)beam and
q is closer to unity for small Q-values or as the E/A for the beam is increased.
In the limit that q = 1 then for a pickup reaction such as (p, d) or (d, t) the size
of the cone around the beam direction that contains all of the events is given by
θmax = sin−1 √f where f = 1/2 for (p, d) and f = 2/3 for (d, t). This gives, as a
first approximation, a cone of about 50◦ degrees half-angle in each case. Similarly,
it is possible to estimate that in (d,p) the laboratory angle corresponding to 30◦ in
the centre of mass frame is about 110◦, so a (d,p) experiment will typically need
to measure at least the angular range from 110◦ to near 180◦ in the laboratory.

Another interesting feature of the velocity addition diagram is how it scales with
the E/A of the beam [33]. Whilst the relative lengths of the vectors are deter-
mined largely by the masses of the various particles, with some residual depen-
dence on the Q-value and the beam energy, the length scale (as given in Ref. [32]) is
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√
2q(MR +Me)which, with the assumption again thatMP �MT is approximately

proportional to
√
(E/A)beam/MP . Now, with the assumption that MP ≈MR (be-

cause the transfer hardly changes the mass), the lengths of the vectors such as υe and
υcm scales as

√
MP . Thus, the whole diagram scales as the product of these lengths

and the length scale itself, and the
√
MP factor cancels. The diagram therefore

scales roughly as
√
(E/A)beam and the energies will scale roughly as (E/A)beam.

The approximation is better, the closer the Q-value is to zero, but the expression at
least gives a guide to the behaviour that can be expected: the detected energy scales
with the beam energy. For elastic scattering, the Q-value is zero, so the result is
accurate: the rate of increase of the energy of the scattered particle with angle, for
angles moving forward of 90◦, scales with the beam energy.

The results of proper (relativistically correct) kinematics calculations for two
very different beams and energies are shown in Fig. 3.11. In Fig. 3.11(a), the results
are for a beam of 16C at 35 A MeV such as might be produced by a fragmentation
beam facility. The central solid line near 90◦ shows the energy of elastically scat-
tered deuterons, rising steeply as the centre of mass angle increases and the labora-
tory angle slightly decreases. On the right hand side of Fig. 3.11(a) are the results for
the protons from the (d,p) reaction populating the ground state in 17C (upper curve)
and a hypothetical excited state at 4 MeV excitation energy. The pair of curves with
the lowest energies at zero degrees are for the (d, t) reaction. The faint dotted line
near 90◦ shows the energies of elastically scattered protons, if there were to be any
1H in the target along with the 2H (a situation commonly encountered experimen-
tally). The curve with the highest energy at zero degrees is for tritons from the (p, t)
reaction populating the ground state of 14C. The remaining curves at the intermedi-
ate energies at zero degrees are for the reactions (d, 3He) and (p, d) initiated by the
different isotopes in the target. Lines connecting all of the curves show the points
corresponding to the indicated centre of mass angles. Note that the energies of the
particles from (d,p) and (d, t) are less than or equal to 5 MeV over the most inter-
esting range of relatively small centre of mass angles, where the differential cross
section will be largest and most structured. Also, the maximum energies reached
over the interesting range are all less than about 30 MeV. Figure 3.11(b) is for 74Kr
at 8.16 A MeV. The curves on the right are for (d,p) to the ground state of 75Kr and
a hypothetical state at 5 MeV excitation. At forward angles, the two lower curves
are for (d, 3He) from this neutron-deficient nucleus. The next two curves are for
(d, t). In each of these cases, the calculations are for the ground state and a 5 MeV
state. The final kinematic curve in Fig. 3.11(b), intersecting at 15 MeV at 0◦, is for
the (p, d) reaction to the ground state of 73Kr. Once again, the particles of princi-
pal interest are generally of about 5 MeV or less, and the energies of interest range
up to about 30 MeV. This consistency of the relevant kinematic energy-angle do-
mains has important implications for the design of particle detection systems aimed
at studying transfer in inverse kinematics. It indicates that a static array could be op-
timised to such measurements and would be applicable to a wide range of reaction
studies.
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Fig. 3.11 Two-body relativistic kinematics calculations for two very different beams in terms
of mass and energy, including results for elastic scattering and several different single-nucleon
transfer reactions: (a) 16C at 35 A MeV, (b) 74Kr at 8.16 A MeV

3.3.2 Laboratory to Centre of Mass Transformation

It is common to transform results for the measurement of differential cross sections
from the laboratory frame into the centre of mass frame, for comparison with the
results of reaction theory calculations. The theory is of course naturally calculated
in the centre of mass frame. In the days when the experiments were performed in
normal kinematics, the shape of the cross section plot would be similar in both the
laboratory and the centre of mass reference frame, because the target was typically
much heavier than the incident deuteron. In the case of inverse kinematics, this is
no longer the case, as shown by comparing Figs. 3.7 and 3.8. It is important to note
that it is not simply a transformation from one angle to another that changes the
differential cross sections between the two reference frames, but the solid angle is
also transformed. The ratio of differential factors that describes this transformation
is known as the Jacobian. Inspection of Fig. 3.10(b), which describes the (d,p)
reaction, shows that for backward laboratory angles (as illustrated) the laboratory
angle (for υ lab

e measured relative to υcm) varies much more rapidly than the centre of
mass angle (enclosed between υcm and υe). In the diagram there is a factor of about
two, between the rates of change. This means that a small solid angle in the centre
of mass frame is spread out over a rather large solid angle in the laboratory frame.
Thus, while dσ/dΩc.m. is largest at small θc.m. or near 180◦ in the laboratory frame,
the effect of the Jacobian is that dσ/dΩlab is reduced relative to less backward
angles. That is, while the very backward laboratory angles are still important in
(d,p) measurements, for determining the shape of the differential cross section,
there are very few counts there.

The transformation from centre of mass to laboratory angles, as just mentioned,
has the effect of spreading out the counts from (d,p) at small centre of mass an-
gles, so that they are spread over a wider solid angle. This reduces the yield of
counts observed near 180◦ in the laboratory frame. A completely separate effect to
also remember is the “sin θ” effect. This will further emphasise the importance of
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detectors close to 90◦ compared to those near 180◦, assuming that the charged par-
ticle detection is cylindrically complete, or approaching this. Then, since the solid
angle in a range dθ at angle θ is given by 2π sin θdθ , the cross section that measures
the number of counts in an experiment is not dσ/dΩ but

dσ

dθ
= 2π sin θ

dσ

dΩ
.

Thus, if a coincidence experiment is considered, for example measuring gamma-
rays in a (d,pγ ) experiment, many of the gamma-rays will come in association
with particles detected towards 90◦.

The transformation between the centre of mass and laboratory reference frames,
for the differential cross section, is given for example by Schiff in his classic Quan-
tum Mechanics text [14]:

dσ

dΩ lab
= (1+ γ

2 + 2γ cos θc.m.)
3/2

|1+ γ cos θc.m.| × dσ

dΩ c.m.

where γ = υc.m./υe. This complicated transformation, as noted above, changes the
shape of the curves significantly. Therefore, a plot in the centre of mass frame of
experimental data for the differential cross section will retain very little information
about any experimental constraints or impacts of the laboratory angles. For example,
the physical gaps between detectors, or the differing thicknesses of target through
which the particles must exit: these often have important implications for the data
but the information is lost in the transformation to the centre of mass frame. For
this reason, some workers choose to plot experimentally measured cross sections
in the laboratory frame, for inverse kinematics experiments, following the ethos
of presenting the data in a form as close as possible to what is actually measured
experimentally.

3.3.3 Strategies to Combat Limitations in Excitation Energy
Resolution

In trying to do experiments using radioactive beams, there are two properties of the
beams that tend to influence the experimental design more than any others. Firstly,
the beams are radioactive. That means that care must be taken regarding the eventual
dumping of the beam and also, quite often, to deal with the angular scattering of the
beam in the target [34]. Secondly, the beams are generally weak, maybe up to a
million times weaker than a typical stable beam that one might have used for an
equivalent normal kinematics experiment with a stable target. This means that, in
practice, there will be a minimum sensible value for the target thickness in order to
perform the experiment in a reasonable time. In turn, this will affect the energies
and angles measured for the particles produced in the reaction. As discussed above,
the particles of interest are often of rather low energy. The energy that is measured
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may depend quite significantly on where the reaction takes place—at the front or
at the back surface of the target, or somewhere in between. Also, for the lowest
energy particles, the direction may be affected by multiple low-angle scattering of
the charged particle as it leaves the target material.

In an experiment to identify and study the unknown excited states of an exotic
nucleus, the kinematical formulae used to produce a plot such as Fig. 3.11 will be
inverted so that the measured energy and angle of a particle are used to calculate the
excitation energy of the final state. Any process that modifies the measured energy
and angle from the actual reaction values will lead to a limitation on the achieved
resolution for excitation energy, even if the best possible computed corrections are
applied. All of these factors were included in a detailed analysis of the resolution that
could be expected from transfer reactions, under different experimental conditions
[35]. The two basic categories of experiment were as follows:

I rely on detecting the beam-like ejectile in a magnetic spectrometer
II rely on detecting the light, target-like ejectile in a silicon detector

with a third option arising which is

III detect decay gamma-rays in addition to the charged particles.

A magnetic spectrometer or a recoil separator is essential in the first case, in order
to separate the reaction products from the direct beam and to measure the ejectile
properties with sufficient accuracy. Operated at zero degrees, it will need to be in-
strumented to allow the accurate measurement of the scattering angles for the very
forward-focussed beam particles. The degree of forward focussing, and hence the
requirements placed upon the resolution of the angular measurements, become more
and more demanding as the mass of the projectile increases. For heavier beams, it
becomes impractical for existing detectors. Furthermore, any spread in the beam
energy translates directly to a spread in the measured excitation energies, and any
nucleon transfer reactions on contaminant material in the hydrogen targets (usually
plastic) will contribute to the observed yield.

If the second method is employed, then we know from the discussion of the kine-
matics that the particles of interest are spread over a significant range of angles. In
order to detect particles over this range, and with good resolution in both energy and
angle, the most obvious choice is an array of semiconductor detectors, and silicon
is by far the most versatile material at present. This method is less sensitive than the
first, to a spread in the beam energy, but is limited as discussed above by the effects
of the target thickness on the measured energies and angles. In practice, it is hard to
imagine resolutions of better than 100–200 keV or so, for excitation energy, if the
experiment demands targets of 0.5 mg/cm2 or more [35]. (This assumes (CD2)n
deuterated polythene targets,1 and with a thickness determined by beam intensities
that may be as low as 104 pps.) In some experiments, thinner targets could be used
and hence better resolution achieved, if the beam intensity were to allow it. In any

1For convenience, the (. . .)n part of (CD2)n will subsequently be omitted, and similarly for the
non-deuterated (CH2)n targets.
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case, to achieve the best resolution, the detector array for the light particles should
achieve good measurement of the particle angles. In the case of a silicon strip de-
tector array, this requires a high degree of segmentation, or in some cases a resistive
strip readout is possible.

A variant of the second method, which avoids the need for an extensive and
highly segmented silicon array, is to use a magnetic solenoid aligned with the beam
axis to collect and focus the charged particles onto a more modest array of sili-
con detectors located around the axis of the solenoid. This is the HELIOS concept,
named after the first device of this type to be implemented [36]. The elegant feature
of HELIOS is that it removes the kinematic compression of energies. Considering
the kinematics of a typical (d,p) reaction as shown for example in Fig. 3.11, the
lines for a difference of 1 MeV in excitation energy are separated in terms of proton
energy by less than 1 MeV at a particular laboratory angle. In HELIOS, when the
protons are focussed back to the axis of the solenoid, they are dispersed in distance
according to a linear dependence on excitation energy. For a detector located at a
particular distance along the axis, it measures particles emitted at different angles
for different excitation energies. The net result is to disperse excited states in en-
ergy in such a way that any limitation due to the intrinsic resolution of the silicon
detector becomes significantly less important. However, if the limitation lies in the
target thickness and the ensuing deleterious effects on the energy and angle of the
particles leaving the target, then there is little benefit to be obtained from simply
using a different method of measurement. Ultimately, if the experiment demands a
relatively thick target, the resolution will be as estimated in Ref. [35]. The helical
detector concept is discussed again in Sect. 3.4.3.

It may be that the limits to resolution imposed by a reasonable target thickness
are not acceptable for a good measurement to be performed. This is likely to happen
in the case of heavier nuclei where levels are more closely spaced than the light
nuclei, or it can occur in any odd-odd nucleus for any mass. In this situation, which
can be expected to be common, the third solution—measuring decay gamma-rays—
becomes attractive.

The higher energy resolution that can be achieved with gamma-ray detection then
gives a much better energy resolution for excited states. This of course works only
for bound states in the final nucleus. In addition to the improved energy resolution,
another feature of possibly comparable importance is that the gamma-ray decay
pathway for a particular final state may help to identify the state more precisely.
From the particle transfer measurement, it is only possible to infer the �-transfer,
which leaves an uncertainty according to whether the spin is (�+ 1/2) or (�− 1/2)
since the transferred nucleon has spin 1/2. The gamma-ray decay branches may re-
solve this ambiguity. It should be noted that there is an experimental challenge in
detecting the gamma-rays with a high enough efficiency and with the ability to ap-
ply a sufficiently good Doppler correction. For the typical beam energies discussed
above, the final gamma-ray emitting nuclei will have velocities of the order of 0.10c
in the laboratory reference frame, always aligned almost exactly along the beam di-
rection (c is the speed of light). In order to correct for the substantial Doppler shift
that this implies, the gamma-ray detectors will also need to measure the angle of
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emission for the gamma-ray, relative to the incident beam. Doppler shift corrections
are discussed further in Sect. 3.4.4.

3.4 Examples of Light Ion Transfer Experiments
with Radioactive Beams

Having described the various approaches to designing an experiment in the previ-
ous section, these possibilities are now illustrated by means of specific examples.
Mostly, the examples are early experiments which helped in developing the tech-
niques and/or (for convenience) experiments by the author with collaborators.

3.4.1 Using a Spectrometer to Detect the Beam-like Fragment

An example of an experiment in which the beam-like particle is measured, and used
to extract all of the experimental information, is provided by the early experiment
performed by the Orsay and Surrey groups at GANIL [37, 38] and illustrated in
Fig. 3.12. The aim was to study the (p, d) reaction with 11Be in order to study the
parentage of the 11Be halo ground state. Because the projectile is relatively light,
then it is a reasonable approach to measure the beam-like particle (method I of
Sect. 3.3.3). A magnetic spectrometer was used, for two reasons. Firstly, the beam
was produced by secondary fragmentation and therefore has significant spreads in
both energy and angle. In order to resolve final states in 10Be that were separated
by less energy than the spread in the beam, a dispersion matched spectrometer was
required. This experiment used the spectromètre à perte d’energie du GANIL, SPEG
[39]. Secondly, in order to measure the scattering angle of the 10Be it was neces-
sary to separate the 10Be from the beam and track its trajectory to a precision that
required a spectrometer. In order to recover the scattering angle, it was also nec-
essary to track the incident beam particles, which required detectors placed before
the first (dispersive) dipole element of SPEG. The beam intensity was 3 × 104 par-
ticles per second (pps) and the mean beam energy was 35.3 A MeV. The measured
10Be particles, at the focal plane, were dominated by the yield from carbon in the
polythene CH2 target. Reactions on just the protons in the target were isolated by
recording the deuterons from the reaction in an array of ten large area silicon detec-
tors. This experiment was successful in measuring the parentage of the 11Be ground
state, which has a neutron halo, in terms of the s-wave and d-wave components (the
latter with an excited 10Be core). In addition to the innovative experimental tech-
niques, the experiment also highlighted some important complexities in the theory
and made innovations in the theoretical interpretation. Specifically, it was necessary
to go beyond the normal simplification of modelling the transferred nucleon in a po-
tential well that is due to the core. It was necessary to use a dynamic picture of 11Be
in terms of a particle-vibration coupling model, in order to calculate the overlap
functions in the transfer amplitude directly from the nuclear structure model.
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Fig. 3.12 In this (p, d) study using a secondary 11Be beam [37, 38], the beam had a large energy
spread, so a dispersion matched spectrometer was used. This, together with the limited spatial fo-
cussing of the beam required beam tracking detectors at the target and in the beam line. Coincident
deuteron detection allowed background from the carbon in the CH2 target to be removed in the
analysis, but the 10Be measurement in the spectrometer gave all of the critical energy and angle
information. The active beam stop comprised a plastic scintillator that allowed the intensity of the
beam to be monitored

3.4.2 Using a Silicon Array to Detect the Light (Target-like)
Ejectile

The first high resolution example of this kind of experiment, aimed at measuring
spectroscopic quantities using a radioactive beam, was an experiment employing
a previously-prepared source of radioactive 56Ni in order to measure the reaction
(d,p) in inverse kinematics [40]. Useful and astrophysically relevant results were
obtained. The experiment used silicon strip detectors arranged in the backward
hemisphere with a solid target of CD2 deuterated polythene and a recoil separa-
tor device—in this case, the fragment mass analyser (FMA) at Argonne [41]. The
beam was produced in the normal way for a tandem accelerator using a source of
radioactive nickel material, and had a typical intensity on target of 2.5 × 104 pps
at an energy of 4.46 A MeV. An additional challenge was the isobaric impurity of
56Co which was a factor of seven more intense than the 56Ni and was separated
using differential stopping foils within the FMA.

A particular silicon array that was developed specifically for experiments with
radioactive beams is MUST [42], which uses large area highly segmented silicon
strip detectors with CsI detectors in a telescope configuration. MUST led the way in
developing electronics that could cope with the many channels required for highly
segmented detectors. Excellent particle identification is achieved. MUST has been
used to study a range of reactions including inelastic scattering of a range of nuclei,
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and with regard to transfer it was very often targeted at experiments to study the
structure of very light and even unbound exotic nuclei, for example 7,8He [43, 44].
Another major silicon array is HiRA which was developed initially for experiments
using radioactive beams produced by fragmentation at MSU [45]. The MUST array
was combined with SPEG spectrometer in a study of neutron-rich argon isotopes
with a pure reaccelerated beam of 2 × 104 pps of 46Ar at 10.7 A MeV from SPI-
RAL at GANIL, incident on a CD2 target of 0.4 mg/cm2 [46]. Good resolution in
excitation energy was achieved, in part by exploiting the special optics of the SPEG
beamline. The detection of argon ions in SPEG was useful in helping to identify
and eliminate background from carbon in the target, and also allowed the identifi-
cation of bound and unbound states in 47Ar according to whether 47Ar or 46Ar was
detected in SPEG, although the spectrometer acceptance was limited and prevented
a full coincidence experiment. Another interesting experiment that used a silicon
array by itself was the study of (d,p) using a beam of 132Sn at 4.8 A MeV from the
Oak Ridge radioactive beam facility [47]. As seen from the calculated cross sections
in Figs. 3.7 and 3.8, this was not really the ideal energy for such a heavy beam, but
it was the maximum possible. The resolution achieved for excitation energy was
limited, for this heavy beam, not by the silicon array but by the target thickness of
0.16 mg/cm2. As also suggested by the cross section plots in Fig. 3.8, the silicon
detectors were optimised by mounting them in a range of angles around 90◦ in the
laboratory.

The TIARA array [48] was the first purpose-built array to combine silicon
charged particle detectors with gamma-ray detectors for transfer work and was first
employed with a radioactive 24Ne beam at the SPIRAL facility at the GANIL lab-
oratory [49]. Initial tests and benchmarking were performed with a stable beam
and a reaction that was previously studied in normal kinematics [48]. TIARA was
designed, taking into account the experience gained from using a high intensity
radioactive beam of nearly 109 pps of 19Ne in the TaLL experiment at Louvain-la-
Neuve [34, 50, 51]. This led to a design in which radioactive beam particles that
are scattered at significant angles by the reaction target will be carried away from
the immediate vicinity of the target, and hence away from the field of view of the
gamma-ray array [34].

TIARA is shown schematically in Fig. 3.13. It is designed to be operated with
four HPGe clover gamma-ray detectors from the EXOGAM array [34, 52] mounted
at 90◦ and at a distance of only 50–55 mm from the centre of the target. The space
available in the forward hemisphere was also severely restricted due to the design
requirement of coupling to the VAMOS spectrometer [53]. The spectrometer allows
reaction products to be measured with high precision and to be identified according
to Z and A. The exceptionally large angular acceptance of VAMOS (up to 10◦) also
allows the efficient detection of recoils from the decay of unbound states via neutron
emission. Examples of the gamma-ray and spectrometer performance are given in
Sects. 3.4.4, 3.4.5 and 3.4.7.

Figure 3.14 shows in detail the geometry of the central barrel in TIARA relative
to the segmented HPGe clover detectors of EXOGAM. The front faces of the clovers
are mounted 54 mm from the centre of the target in this configuration with two layers



92 W.N. Catford

Fig. 3.13 The TIARA array was designed specifically to measure nucleon transfer reactions in
inverse kinematics with radioactive beams. It has an octagonal barrel of position-sensitive silicon
detectors, with annular silicon arrays at forward and backward angles. In total, approximately 90 %
of 4π is exposed to active silicon. The vacuum vessel is designed so that EXOGAM gamma-ray
detectors can be placed very close to the target, achieving a gamma-ray peak efficiency of order
15 % at 1 MeV. A robotic target changing mechanism allows different targets to be placed at the
centre of the barrel

of silicon in the barrel. The inner layer of silicon is position sensitive parallel to
the beam direction, which is the most important direction in defining the scattering
angle of any detected particle. Each of the 8 inner detectors has four resistive strips
and is 400 µm thick. The second layer of silicon is 1 mm thick but non-resistive.
The 4 strips per detector align behind the strips on the inner barrel. The primary
purpose of the second layer of the barrel is to indicate when particles punch through
the inner layer. The target is placed at the geometric centre of the barrel. The targets
are typically 0.5 mg/cm2 self-supporting foils of CD2 mounted on thin holders with
holes of diameter 40 mm, where the large hole diameter is chosen so as to minimize
the shadowing of the barrel by the target frame.

Subsequent developments of the TIARA approach are represented by T-REX
[56] and SHARC [57], which are shown in Fig. 3.15. Another key development,
with a barrel design similar to TIARA, is ORRUBA [60] (and its non-resistive strip
version super-ORRUBA) which was developed at Oak Ridge. The most obvious fea-
ture of these arrays, relative to TIARA, is that they are designed to fit inside a more
conventional gamma-ray array. To some extent, this is equivalent to accepting a lim-
itation on the beam intensity that can be used—certainly at an intensity of 109 pps
as envisaged in the TIARA design, an enormous amount of radioactivity would be
deposited inside the gamma-ray array by the elastic scattering of beam particles
from a typical CD2 target. However, at beam intensities of up to a about 108 pps,
the radioactivity deposited inside the array will be tolerable and there will be a real
benefit in having the silicon array inside a more extensive array of gamma-ray detec-
tors. The advantages lie in the energy resolution achievable with improved Doppler
correction, and in simply having a wider range of gamma-ray angles included in the
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Fig. 3.14 The TIARA setup as modelled in géant4 [54]: (a) overview, including MUST2 [55] and
the EXOGAM clover HPGe gamma-ray detectors [52]. The four leaves of each of the 4 are shown;
(b) the central silicon array comprises two concentric octagonal barrels and the clover front faces
are 54 mm from the beam axis. The view is looking with the beam from just in front of the annular
array. Beyond the barrel, the detectors of MUST2 are glimpsed. The circular target is mounted at
the centre of the barrel

Fig. 3.15 Two post-TIARA silicon arrays developed for use completely inside a large gamma-ray
array: (a) T-REX [56], which is operated inside the MINIBALL array of HPGe cluster detectors
at ISOLDE [58], and (b) SHARC [57] which is operated inside the TIGRESS array of segmented
HPGe clover detectors [59]. Both include silicon boxes situated forward and backward from the
target

measurements. A wide range of gamma-ray angles may open up additional physics
possibilities in the interpretation of the data. The planned deployment (GODDESS)
of ORRUBA inside Gammasphere [61] with around 100 gamma-ray detectors is
perhaps the pinnacle of this approach. The two arrays T-REX and SHARC, coinci-
dentally, have extremely similar geometries. The choice of rectangular boxes allows
the silicon detector designs to be relatively simple and hence economical, and the
ends of the array are completed with compact annular detectors of a pre-existing
design. T-REX (as in the case of ORRUBA, and the original TIARA) includes re-
sistive strips, which helps to keep the number of electronics channels manageable
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using conventional electronics. However, the price that is paid for using resistive
strips is quite high, in terms of performance. Firstly, such detectors typically have
higher energy thresholds than non-resistive strips, because they have an electronic
noise contribution related to the resistance of the strip [62, 63]. Secondly the posi-
tion resolution that is achieved is dependent on the energy deposited, being propor-
tional to 1/E [64]. SHARC is the first dedicated compact transfer array to utilise
double-sided (non-resistive) silicon strip detectors completely, resulting in superior
energy thresholds and a consistency in position resolution. This choice of detector
was made possible by the availability of up to 1000 channels of high resolution
electronics using the TIGRESS digital data acquisition system [59].

3.4.3 Choosing the Right Experimental Approach to Match
the Experimental Requirements

As will be apparent from the examples already discussed, a variety of experimental
approaches are chosen by different experimenters, for transfer experiments. Largely,
these are driven by specific experimental requirements, of which two of the most
important are: beam intensity limitations, and the required resolution in excitation
energy. One of the most versatile and complete approaches is the combination of a
compact, highly segmented silicon array with an efficient gamma-ray detection (as
adopted, for example, by TIARA) and hence the results from that approach are pre-
sented in some detail, in this document. In this section, we briefly review alternative
choices made by experimenters.

In the case of an experiment at SPIRAL at GANIL, aimed at studying 27Ne via
the (d,p) reaction [65], the experimental limitation at the time was the available
beam intensity. The solution adopted (see Fig. 3.16) was to employ a much thicker
target, but this implied that the protons would have too low an energy to exit and
be detected. Therefore the experiment was focussed on using the heavier beam-like
particle, as in the 11Be experiment discussed in Sect. 3.4.1. The final nucleus had a
reasonably complex structure, and hence gamma-ray detection was considered vital
and would possibly offer additional information on spin, since the proton differen-
tial cross sections could not be observed. The EXOGAM array of segmented Ge
gamma-ray detectors was employed [52]. The required target thickness, in order to
achieve sufficient gamma-ray detection, was then achieved by using a solid cryo-
genic pure D2 target of 17 mg/cm2. In terms of an equivalent CD2 thickness of
deuterons, the energy loss in the cryogenic target is reduced by a factor of three,
so this is equivalent in energy terms to 6 mg/cm2 of CD2 but has three times the
number of target nuclei. In addition, the absence of carbon in the target removes the
problem of background reactions that was mentioned in Sect. 3.4.1. A microchan-
nel plate detector (MCP) before the target assisted in particle identification using
the VAMOS spectrometer [53]. Inside VAMOS, the particles were focussed by two
quadrupole elements (Q1,Q2) through a dipole magnet and then detectors in the
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Fig. 3.16 This is a variant on the technique of extracting spectroscopic information from the
beam-like particle, rather than the light target-like particle. The aim was to use a thicker target to
compensate for a low beam intensity, and the background from target contaminants such as carbon
was minimized by using a solid deuterium target. Gamma-ray detection allowed precise excitation
energy measurements. See text for definition of other terms

Fig. 3.17 The MAYA detector [66] is an active target in the sense that the gas that fills MAYA
acts both as the target for the nuclear reactions and also as the fill gas of a time projection chamber.
Ionisation paths in the gas are drifted to readout planes, and using the drift time it is possible to
reconstruct every individual nuclear reaction in three dimensions (and with particle identification).
The diagram shows a reaction on the 12C in the C4H10 gas, but reactions on the hydrogen, or other
fill gases, can also be studied

focal plane region recorded the particles’ positions, angles and energies. An ex-
ample of the particle identification that can be achieved in VAMOS is included in
Sect. 3.4.5.

Most experimental methods discussed here are limited in resolution by the en-
ergy loss effects in thick targets. However, this problem is largely removed if it is
possible to determine the precise point of interaction within the target. By turning
the target into an active detector, designs such as MAYA [66] (shown in Fig. 3.17)
achieve this objective and hence can be used with the lowest beam intensities. In
fact, for higher beam intensities it is usually necessary in this type of detector to
place an electrostatic screen around the path of the beam itself. The classic model
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Fig. 3.18 The HELIOS device [36, 69] collects particles magnetically at all angles and focusses
them to compact detectors along the axis. The angular information is reconstructed from the mea-
sured energy and the distance from the target to its point of return to the axis, and is generally more
accurate than can be obtained by direct angle measurements. The way in which the spectrome-
ter operates has the effect of reducing the limitations arising from the detector energy resolutions
themselves

for this type of detector is IKAR, which was produced for high energy beams and
operates with multiple atmospheres of H2 gas [67, 68]. In MAYA, the reaction can
occur at any point through the gas. The ionisation by all the particles in the gas is
drifted in an electric field to a readout plane where the position and amount of ioni-
sation are recorded, along with the time of arrival (i.e. the drift time). This allows a
full reconstruction in three dimensions of all charged particle trajectories, subject to
various limitations in spatial and energy resolution. The measurement of the ionisa-
tion along the whole path of the particles in the gas allows the particle types to be
identified. In order for proper drifting of the charge and proper readout, the choice
of gas pressure is subject to some restrictions, and hence some particles might eas-
ily penetrate beyond the confines of the gas volume. The MAYA detector includes a
forward wall of CsI detectors, to deal with these penetrating particles.

A novel approach to achieving 4π detection efficiency is the HELIOS con-
cept that has been developed by the Argonne group and collaborators [36]. Parti-
cles emerging at almost all angles from the target are focussed in a large-volume
solenoidal field and are brought back to a position-sensitive silicon array aligned
along the solenoid axis. This is shown schematically in Fig. 3.18, which is adapted
from Ref. [36]. The targets are typically CD2 foils, but a gas cell target has also been
constructed to allow the study of 3,4He-induced reactions. The ideal design param-
eters for the solenoid are remarkably similar to those for medical MRI scanners and
indeed the original HELIOS is a decommissioned MRI device [69]. The energy lim-
itations arise not only from the field strength and radius, but also the length along the
axis. It is shown in Ref. [36] that the limitations are much more significant for a typ-
ical 0.5 m long device (or a 1 m long device with the target at the centre) than they
are for a 1.5 m long device (Fig. 8 of Ref. [36]). The detection limits as a function
of angle, for a device between the quoted lengths, are well matched to the kinemat-
ics of (d,p) in inverse kinematics. As shown in Ref. [36], the Q-value (excitation
energy) is calculated directly from the measured energy and distance along the axis
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for each detected particle (Eq. (5) [36]). So also is the centre of mass angle (Eq. (7)
[36]). At an intermediate point in the calculation, the measured time of flight is used
to measure the charge to mass ratio A/q for the particle (Eq. (2) [36]) but once the
particle identification is made, the exact value is substituted in further calculations.
Thus, apart from the measured energy and position, the calculations rely only upon
the precise value/stability and the homogeneity of the magnetic field. The particle
identification (apart from one A/q ambiguity between deuterons and 4He++) is a
significant bonus, although it does have some implications for the time structure
of pulsed beams. As mentioned in Sect. 3.3.3, any impact on the excitation energy
resolution arising from the detector energy resolution is significantly reduced in
the HELIOS method, because particles are compared at the same z (distance along
the axis) rather than at the same θlab (angle of emission in the laboratory frame).
This turns out to have the effect of removing the kinematic compression observed in
Fig. 3.11, wherein (particularly at backward angles in the laboratory) the kinematic
lines are closer together in proton energy than in excitation energy.

An example of the use of HELIOS with an online produced radioactive beam is
the study of 16C via the (d,p) reaction in inverse kinematics with a thin CD2 target
of 0.11 mg/cm2 and a beam of 106 pps of 15C [70]. Interestingly, the 15C secondary
beam was itself produced using the (d,p) reaction in inverse kinematics with a
14C primary beam. Good resolution was achieved, but one key doublet of states at
3.986/4.088 MeV in 16C could not be resolved. Each of these states gamma-decays
to the 1.766 MeV level, and the 100 keV difference in the energies of these 2.2 MeV
gamma-rays would be easily resolvable with a modern Ge gamma-ray array. It is
a considerable challenge to combine the HELIOS technique with state-of-the-art
gamma-ray detection. One very appealing future direction of development would be
to combine the MAYA and HELIOS concepts, so that particles could be completely
tracked in three dimensions but with the focussing and collection advantages of the
magnetic field.

3.4.4 Using (d,p) with Gamma-Rays, to Study Bound States

Typical data for the energies of the measured particles, as a function of their de-
duced laboratory angle, are shown in Fig. 3.19 for an experiment using a silicon
array with a large angular coverage [71]. This experiment was performed with a
beam of 3× 107 pps of 25Na at 5 A MeV, using the SHARC array [57] at TRIUMF.
Provided that calibrations have been performed in advance, this type of spectrum
can be created online, during data acquisition. Once the kinematic lines are seen,
the first hurdle is crossed, and the experiment is seen to be working correctly. Then,
the discussion can turn to the specifics of the physics to be measured and the statis-
tics that are required. The most intense lines will typically be those due to elastic
scattering. In the figure, the data show lines that are recognisable as coming from
the elastic scattering of both deuterons and protons in the 0.5 mg/cm2 CD2 tar-
get. It is typical that any deuterated target will have some fraction of non-deuterated
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Fig. 3.19 Raw data for a
typical experiment [71] using
a silicon array to detect the
light particles, to be
compared with Fig. 3.11.
Kinematic lines are overlaid
over the deuterons (higher
energies) and protons from
elastic scattering. At larger
angles, the loci are clearly
seen for protons from (d,p)
reactions. The apparent
angular dependence of the
lower energy threshold is due
to corrections that are applied
to compensate for energy
losses in the target

molecules. The intensity falls away, generally, as the energy increases and the centre
of mass scattering angle also increases. The angular distribution may show oscilla-
tions, but the fall in intensity is the general tendency. In this particular experiment,
there is a gap in the data near 90◦ due to a physical gap in the array, related to the
target mounting and changing mechanism. A further gap exists in the backward an-
gle region due to the silicon detector support structure. In the region backward of
90◦, the kinematic lines arising from (d,p) reactions are evident. In this angular
range, there are no other deuteron-induced reactions (apart form (d,p)) that can
contribute to the charged particle yield. From that perspective, no particle identi-
fication is needed for the backward angles. In fact, because of the low energies,
no �E−E identification technique would be appropriate, but time-of-flight or sili-
con pulse-shape techniques would be feasible. The reason that particle identification
could indeed be useful is that not all reactions will be induced on the deuterons in
the target. Assuming a CD2 target as in the experiment shown here, the reactions
induced on carbon nuclei can produce charged particles at any angle. Typically, the
compound nuclear reactions that arise from the carbon will produce both protons
and alpha-particles (and possibly other species) by evaporation from the excited
compound nucleus. Standard codes exist, to estimate the evaporation channels that
will be important for a particular beam and energy combination (e.g. LISE++ [72],
which includes the fusion-evaporation code PACE4 [73]). These evaporated parti-
cles will not have a specific angle-energy relationship because several particles will
be evaporated. Also, alpha-particles can deposit much more energy than protons in
a given thickness of silicon because of their shorter range. Thus, the kinematic lines
from (d,p) and elastic scattering will in general appear on a smooth background
arising from evaporated charged particles from compound nuclear reactions. This is
evident to some extent in Fig. 3.19, even though some experimental techniques have
been applied so as to reduce the compound nuclear contribution (see below).

Figure 3.20 summarises a range of experimental results from a (d,pγ ) study
using a radioactive beam of 2 × 104 pps of 24Ne at 10 A MeV [49]. The energy
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Fig. 3.20 Results from a (d,p) study of 25Ne using a beam of 24Ne at 10 A MeV [49]: (a) exam-
ple excitation energy spectrum reconstructed from the measured proton energies and angles and
showing gating regions used to extract coincident gamma-ray spectra, (b) gamma-ray energy spec-
tra (iii), (iv) from p–γ coincidences for highlighted regions of excitation energy in (a), spectra (i),
(ii) from p–γ –γ data with the events and γ -ray gates indicated in (iii), (c) summary of the level
and decay scheme deduced from this experiment, (d) differential cross sections for the indicated �
transfers to states in 25Ne. Elastic scattering data are inset (see text)

and angle information as shown in the previous figure can be combined to calcu-
late the excitation energy in the final nucleus, assuming that the reaction was (d,p)
initiated by the beam. Angular regions where other reactions dominate can be re-
moved in the analysis. Figure 3.20(a) shows an excitation energy spectrum for 25Ne
calculated from the kinematic formulae, for one particular angle bin. The fit to the
various excited state peaks in this spectrum was informed and constrained by the
observed gamma-ray energies. The gamma-ray energy spectrum observed with spe-
cific limitations on the excitation energy are shown in part (b) of the figure, where
parts (iii) and (iv) correspond to the indicated excitation energy limits in 25Ne. For
the events included in Fig. 3.20b(iii), the results of gating on particular gamma-ray
peaks are shown in parts (i) and (ii). The p–γ –γ triple coincidence statistics in
these two spectra are sufficient (just) to deduce that the two observed gamma-ray
transitions are in coincidence. (Actually, the experiment in Ref. [49] also measured
the heavy (25Ne) particle after the reaction, so the data in Fig. 3.20b(i)–(ii) actually
represent quadruple coincidence data.) Taking into account the excitation energies
at which the nucleus is fed by the (d,p) reaction, and the observed gamma-ray cas-
cade, the level scheme in Fig. 3.20(c) was inferred. The angular distributions shown
in Fig. 3.20(d) were used to deduce the transferred angular momentum carried by
the neutron, according to the best-fit shape. The calculations that are shown were
performed using the ADWA method. Different angular momenta were deduced for
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the various states. For example, the ground state has a clear �= 0 distribution. The
scaling of the theory to the experimental data gave the measured spectroscopic fac-
tors. In the case of the 4.03 MeV state, it was only possible to set a lower limit
on the cross section at certain angles. This was related to the energy thresholds of
the silicon detectors used for the proton detection. As shown in the kinematics di-
agrams in Fig. 3.11, and illustrated in the data of Fig. 3.19, the observed particles
from (d,p) are lower in energy for states with higher excitation energy and hence
the higher states are subject to this type of threshold effect. Raising the beam energy
will give access to higher excitation energies. The observed lower limits on the cross
section for the 4.03 MeV state were nevertheless sufficient to rule out the alternative
angular momentum assignments and � = 3 could be assigned. Finally, an inset in
Fig. 3.20(d) shows the differential cross section for deuteron elastic scattering, mea-
sured as a function of the centre-of-mass scattering angle. This was derived from
the rapidly rising locus of data points observed in the data, similar to that for the
elastics shown in Fig. 3.19. This will be discussed further, in Sect. 3.4.6.

The gamma-ray energy spectra of Fig. 3.20 include a correction, applied event-
by-event, for a very significant Doppler shift. At the recommended beam energies
of 5–10 A MeV, the projectiles have a velocity of approximately 0.10c. Actually, the
velocity is sufficient for the Doppler shift at 90◦ due to the second-order terms to
be easily measured. Hence, the full relativistically correct formula should be used,
to apply Doppler corrections to the measured gamma-ray energies so that they ac-
curately reflect the emission energies in the rest frame of the nucleus. The Doppler-
corrected energy Ecorr is given by

Ecorr = γ (1− β cos θlab)Elab

where γ = 1/
√

1− β2 and β = υ/c where υ is the velocity of the emitting nucleus.
The angle θlab is measured for the gamma-ray detector relative to the direction of
motion of the nucleus. In practice, and taking into account the accuracy with which
the gamma-ray angle can be determined, it is usually sufficient to assume that the
emitting nucleus is travelling along the beam direction in these inverse kinematics
experiments (although it is also easy to calculate it’s angle from the measured light-
particle angle). It will be relevant later, to note that another relativistic effect related
to gamma-rays is significant at these beam energies. The angle of emission relative
to the beam direction, as measured in the frame of the emitting nucleus, is different
from the angle measured in the laboratory frame of reference. This consequence of
relativistic aberration means that the gamma-rays emitted by a moving nucleus are
concentrated conically towards its direction of motion, which is known as relativistic
beaming or as the relativistic headlight effect. For isotropic centre of mass emission
at β = 0.1, the fraction of gamma-rays emitted forward of 90◦ in the laboratory
will be about 55 %. The yield of gamma-rays observed at 10◦ in the laboratory will
be larger than the yield at 170◦ by a factor of 1.22/0.82 = 1.49. The relativistic
aberration formula is given by

cos θlab = cos θc.m. − β
1− β cos θc.m.



3 What Can We Learn from Transfer, and How Is Best to Do It? 101

Fig. 3.21 Results of the Doppler shift correction procedure applied to 26Na gamma-rays pro-
duced in the reaction of 5 A MeV 25Na with deuterons [71]. The upper spectrum (outlined and
partly shaded in light grey) is uncorrected, with the shaded parts indicating the spread of counts
contributing to four of the strongest peaks in the lower spectrum. The lower spectrum (darker
shading) is corrected for the Doppler shift. In addition to the Doppler correction, an add-back pro-
cedure has been applied to account for Compton scattering (see text). This lowers the continuum
background. All of these data are “Trifoil gated” to remove or minimize events of a compound
nuclear origin, as explained in Sect. 3.4.5

where θc.m. is measured in the rest frame of the nucleus and other terms are as
defined above.

The relativistic Doppler shift correction was already performed for the gamma-
rays in Fig. 3.20 and is shown in more detail for a different experiment, in Fig. 3.21.
In the case of Fig. 3.20, the gamma-ray angle could be determined only according
to which leaf (crystal) of the clover detector recorded the initial interaction. The res-
olution at 1 MeV was 65 keV FWHM (full width at half maximum) after correction
[49], limited by the high value of β = 0.1, the close proximity of the detectors to
the target (50 mm) and the lack of any further gamma-ray angle information. This
is reduced by a third to just under 45 keV (FWHM) at 1 MeV in the TIARA con-
figuration if the clover segmentation information is used [48]. In the experiments
[71] with SHARC, using TIGRESS, the distance to the front face of the gamma-ray
detectors was nearly three times larger than TIARA, at 145 mm. The gamma-ray
clover detectors were centred at either 90◦ or 135◦ and each leaf of the clover was
four-fold segmented electronically. An add-back procedure was applied, to account
for Compton scattering between different leaves of the same clover. This involved
adding the energies together and then adopting the segment with the highest energy
as indicating the angle of the initial interaction (a criterion that is justified by sim-
ulations [48]). For a (d,pγ ) gamma-ray at 1806 keV, the observed resolution after
Doppler correction was 23 keV (FWHM) or 18 keV (FWHM) for detectors at 90◦
and 135◦ respectively (reflecting the Doppler broadening, as opposed to shift, that
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Fig. 3.22 Data from a study of 26Ne at 10 A MeV bombarding a CD2 target [75, 76]. Particles
were detected in the wide-acceptance spectrometer VAMOS centred at zero degrees and were
identified using the parameters measured at the focal plane. This determined the reaction channel
and effectively eliminated any contribution from carbon in the target

contributes at 90◦). Scaling this to the previously quoted energy of 1 MeV gives a
resolution of 10–12 keV (FWHM). This resolution is a factor of 10–50 better than
the resolution in excitation energy obtained from using the measured energy and
angle of the proton. Thus, the resolution in excitation energies for states populated
in (d,p) reactions can be improved by a similar factor.

3.4.5 The Use of a Zero-Degree Detector in (d,p) and Related
Experiments

The ability to detect the beam-like particle, as well as the light particle, from trans-
fer reactions in inverse kinematics is a big advantage for several reasons. It was
therefore a fundamental design constraint, for TIARA [48, 74], that it should be
coupled to the magnetic spectrometer VAMOS. The advantages are partly evident
from inspection of Fig. 3.22. The different particle types observed at angles around
zero degrees, following the bombardment of a CD2 target with a 26Ne beam, are
clearly identified. The beam in this case was 2500 pps at 10 A MeV and the target
thickness was 1.20 mg/cm2. Two further features make this zero degree detection
even more useful. Firstly, the silicon array will record the coincident particles only
for the reactions induced on the hydrogen in the target; the recoil carbon nuclei
for this constrained kinematics will essentially all stop in the target. Secondly, the
spectrometer gives not only the particle identification but also the angle of emission
for the heavy particle, which can be exploited, for example as in Sect. 3.4.7. In the
example shown here, the reaction products could be simultaneously collected and
identified for (d,p) to bound states of 27Ne, (d,p) to unbound 27Ne that decays
back to 26Ne, and (d, t) to bound states of 25Ne.
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Fig. 3.23 Schematic of the experimental setup for experiments combining the SHARC Si array
with the TIGRESS gamma-ray array [71]. A plastic scintillator detector was introduced at zero
degrees, 400 mm beyond the target, to help in identifying and eliminating events arising from
reactions on the carbon component of the CD2 target. The performance of this trifoil detector [78]
is discussed in the text

In experiments currently performed at TRIUMF, there is no access to a spec-
trometer such as VAMOS, and hence a less elaborate solution was implemented,
and is described here. Note that, in the longer term, the purpose-built fragment mass
separator EMMA [77] will become available at TRIUMF. In the meantime, a detec-
tor developed at LPC Caen and called the trifoil was adapted [78] from its original
purpose, which was to provide a timing signal for secondary beams produced via
projectile fragmentation at intermediate energies. The experimental layout for the
first experiment [71] using the trifoil in this fashion is shown in Fig. 3.23. In this
implementation, the plastic scintillator in the trifoil will record signals arising from
unreacted beam particles or transfer and similar reactions in the target, i.e. where
the beam-like particle is not slowed down. If the reaction in the CD2 target was
induced by the carbon, then it could be either a transfer reaction (if peripheral) or
a compound nuclear reaction. In the former case, no particle would be observable
in the silicon array SHARC. In the second case, the evaporated charged particles
could be observed, but also the product at zero degrees would be slower moving
and would have a higher Z than for a transfer reaction induced by the hydrogen in
the target. The compound nuclear products are then stopped by a passive layer of
aluminium, whilst still leaving the direct reaction products with sufficient energy to
be recorded in the trifoil and then pass through to a remote beam dump. The present
trifoil detector is big enough to span the cone of recoil beamlike particles corre-
sponding to protons from (d,p) collected over a wide range of angles. Compound
nuclear events are completely prevented from producing a valid trifoil signal, by
means of the passive stopper, but depending on the beam rate there may be random
coincidences with other beam particles arriving in the same bunch of the pulsed
beam. (Ideally, the detector would be insensitive to unreacted beam particles, and
this was achieved to some extent.)
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Fig. 3.24 Gamma-ray energy spectrum acquired for a beam of 25Na at 5 A MeV incident on aCD2
target, using the full TIGRESS array (see text). The requirement of a trifoil signal eliminates a large
fraction of the smooth background, and largely removes the peaks due to scattered radioactivity
and compound nuclear reactions. The radioactivity peaks are dispersed by the Doppler correction

The effect of the zero degree trifoil detector in reducing the background in the
gamma-ray energy spectra is illustrated in Fig. 3.24. This spectrum was acquired for
a beam of 25Na at 5 A MeV incident on a CD2 target with an average intensity of
3 × 107 pps. The spectrum includes data from the full TIGRESS array, comprising
8 detectors with 4 placed at 90◦ and 4 at 135◦ in this experiment [71]. The spectrum
is Doppler corrected as described above, and hence the gamma-rays produced by a
source at rest (such as the 511 keV annihilation gamma-ray and those originating
from the radioactive decay of scattered and then stopped 26Na projectiles) have
been transformed into multiple peaks depending on their angle of detection relative
to the target. Escape suppression has also been applied, using the signals from the
scintillator shields for each clover detector. The first thing to note is that the smooth
background, arising from unsuppressed Compton scattering events due to higher
energy gamma-rays, is massively reduced by applying the trifoil requirement. This
is quantified below. Secondly, with regard to the peaks, it can be seen for example
that the 1806 keV peak arising from the (d,p) product 26Na is retained in the trifoil-
gated spectrum with high efficiency whereas the 1266 keV peak arising from the
compound nuclear product 31P is mostly eliminated. In fact, the elimination of the
31P peak reveals an underlying 26Na peak at 1276 keV.

In order to quantify the improvement in peak:background ratio that was achieved
by using the trifoil, spectra such as those in Fig. 3.25 were produced. The gamma-
ray energy spectrum in Fig. 3.25(a) is for a single clover at a single laboratory angle.
The data were analysed in this way, in order to be sure to separate as much as pos-
sible the gamma-rays arising from transfer and compound nuclear reactions. The
optimal value of the velocity β for the Doppler correction is of course different for
these two different categories of reaction, so the correction procedure produces rel-
ative movement in energy between counts from transfer and compound reactions
depending upon the angle of the gamma-ray detection. The proton energy data in
Fig. 3.25(b) are for a thin slice in a spectrum of energy versus angle such as that
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Fig. 3.25 Energy spectra accumulated for a beam of 25Na at 5 A MeV incident on a CD2 target,
showing the rejection of background using the trifoil detector as discussed in the text: (a) expanded
view of the low energy gamma-ray spectrum, for a single clover crystal at 82◦ to the beam direc-
tion, (b) example proton energy spectrum for measured proton angles between 105◦ and 107◦ in
the laboratory frame, i.e. a vertical slice in Fig. 3.19

shown in Fig. 3.19. Already, in Fig. 3.19, the trifoil requirement was applied and
this reduced a smooth background arising from compound nuclear events. The ex-
tent of this background reduction can be measured using Fig. 3.25(b). In this partic-
ular experiment, the average efficiency for successfully tagging a genuine proton or
a genuine gamma-ray (i.e. one arising from a transfer or other direct reaction) was
about 80 %. The shortfall relative to 100 % was due to the intrinsic efficiency proper-
ties of this particular trifoil detector. The average probability for incorrectly tagging
a charged particle or gamma-ray of compound nuclear origin was about 15 %, or for
a gamma-ray from radioactive decay it was about 10 %. The origin of this unwanted
probability lay in the high beam intensity and the chance of recording an unreacted
beam particle in the same nanosecond sized beam bunch as a compound reaction.
Taken overall, the peak:background ratio in each of the proton energy spectrum and
the gamma-ray energy spectrum was improved by nearly an order of magnitude.
The two reductions of the background are not independent. For a particular gamma-
ray peak, an enhancement in the peak:background ratio of typically a factor of 40
was observed, and there is scope for improvement upon this as noted above.

3.4.6 Simultaneous Measurements of Elastic Scattering
Distributions

In the experiments with TIARA [49, 75, 84] and SHARC [71], the absolute normal-
isation was provided by a simultaneous measurement of the elastic scattering cross
section. An example of the data obtained for the cross section, plotted as a function
of the centre of mass scattering angle, is shown as the inset in Fig. 3.20. This tech-
nique works well, so long as the elastic scattering can be measured sufficiently close
to 90◦ in the laboratory that it includes the small values of the centre of mass angle
where the elastic cross section can be calculated reliably. The method relies upon
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being able to evaluate the cross section theoretically using an optical model calcu-
lation. At small centre of mass angles, the deviation from Rutherford scattering will
be small and the cross section will be reliable. Assuming that the measurements can
be made, there are significant advantages in using this technique. The three main ad-
vantages concern (a) the beam integration, (b) the target thickness and (c) the dead
time in the data acquisition system. The beam integration would normally require
the direct counting of every incident beam particle, with a detector of a known and
consistent efficiency. The target thickness would normally be required to be known
precisely. However, the measurement of the yield for elastic scattering allows the
product of these two quantities ((a) and (b)) to be measured, including any neces-
sary correction for the dead time (c) of the acquisition. In the experiments described,
the trigger for the acquisition was for a particle to be detected in the silicon array.
The elastic scattering and (d,p) reaction events were then subject to the same dead
time constraints. It is still necessary to have a reasonable measurement of the target
thickness, so that corrections can be applied for the energy lost by the incident beam
and by charged particles as they leave the target.

3.4.7 Extending (d,p) Studies to Unbound States

The extension of (d,p) studies to include transfer to states in the continuum of
the final nucleus is relatively straightforward experimentally compared to the theo-
retical interpretation. In fact, this issue highlights situations in the development of
the reaction theory that have remained unresolved, or partially unresolved, from the
days when (d,p) reactions in normal kinematics were a major topic of research.

An experimental example that is relatively simple to treat, both experimentally
and theoretically, is provided by a study of the lowest 7/2− state in 27Ne, populated
via (d,p) with a 26Ne beam [75]. This state is observed as an unbound resonance
at an excitation energy of 1.74 MeV in 27Ne, compared to the neutron separation
energy of 1.43 MeV. For reasons of both the relatively small energy above threshold
and the relatively large neutron angular momentum of �= 3, this unbound state is
quite narrow. In fact, the experiment implies the natural width to be 3–4 keV (but in
the data it is observed with a peak width of 950 keV due primarily to target thick-
ness effects). In the case of a relatively narrow resonance, meaning a resonance with
a natural width that is small compared to its energy above threshold, it is possible
to carry out a theoretical analysis with relatively small modifications to the theory.
One method is to make the approximation that the state is bound, say by 10 keV, in
order to calculate the form factor (i.e. overlap integral) for the neutron in the trans-
fer; this can satisfactorily describe the wave function in the region of radii where
the transfer takes place. An improved approach is to use a resonance form factor,
following the method of Vincent and Fortune [79]. In this theory, the magnitude of
the differential cross section scales in proportion to the width of the resonance. If a
barrier penetrability calculation is used, to estimate the width for a pure single par-
ticle state, then the cross section can again be interpreted in terms of a spectroscopic
factor. The Vincent and Fortune method has been implemented [80] in the Comfort
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extension [81] of the widely used DWBA code DWUCK4 [82]. For these narrow,
almost bound resonances, the structure of the differential cross section retains its
characteristic shape, determined by the transferred angular momentum.

It has long been known [83] that the oscillatory features of the differential cross
sections, which allow the transferred angular momentum to be inferred from exper-
imental data, are less prominent or even absent when the final state is unbound and
broad in energy. The method of Vincent and Fortune also ceases to be applicable,
for these broad resonances. Because of the lack of structure, it becomes difficult to
interpret the experimental data so as to determine the spins of final states. An exper-
imental example is provided by the study of unbound states in 21O via the (d,p) re-
action with a beam of 20O ions [84]. The analysis in Ref. [84] included calculations
using the CDCC model mentioned in Sect. 3.2.3, wherein the continuum in 21O was
considered to be divided into discrete energy bins with particular properties.

It may be possible to recover some sensitivity to the transferred angular mo-
mentum by observing the sequential decay of the resonance states. The observed
angular distribution should reflect the angular momentum of the decay of the res-
onance, with a dependence on the magnetic substate populations for the resonant
state in the transfer reaction. An attempt to exploit this effect was made in the study
of d(26Ne, 27Ne)p mentioned above [75, 76]. The 26Ne products were identified
in a magnetic spectrometer as shown in Fig. 3.22. By a process of ray tracing [53]
it was also possible to reconstruct the magnitude and direction (θ,φ) of the 26Ne
momentum. Combining this with the momentum of the incident beam and the light
particle detected in TIARA, it was possible to reconstruct the missing momentum
[76]. It was assumed that the light particle was a proton, arising from (d,p). The
primary aim of this particular analysis was to be able to separate the events arising
from (d,p) from those arising from (d, d) or (p,p) in the part of the TIARA array
forward of 90◦. In this sense, it was very successful, as shown by the separation of
the main elastic peak from the sequential decay peak in Fig. 3.26. A threshold of
40 MeV/c effectively discriminates between these two reaction channels. Unfortu-
nately, the resolution in terms of the reconstructed angle (rather than the magnitude)
of the unobserved neutron momentum was inadequate to take this further. No useful
angular correlation could be extracted, for the sequential 27Ne∗ → 26Ne+n decays.

3.4.8 Simultaneous Measurement of Other Reactions Such
as (d, t)

Radioactive beams are so difficult to produce that an experiment should make the
best possible use of the beam delivered to the target. The compact silicon arrays such
as TIARA were designed to cover the whole range of laboratory angles with particle
detectors that would assist in this aim. The detectors in the forward hemisphere can
record the particles from reactions such as (d, t) or (d, 3He), at the same time as
those just forward of 90◦ record elastic scattering and those in (predominantly) the
backward hemisphere record the (d,p) reaction products. Indeed, the experiment
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Fig. 3.26 Reconstructed magnitude for the momentum of any missing particle when 26Ne and a
light charged particle (assumed to be a proton) are detected from the reaction of a 26Ne beam on
a CD2 target [76]. The upper histogram is for all data where a 26Ne was positively identified. The
green shaded area giving mainly a peak near zero is for data selected to highlight elastic scatter-
ing, which in fact is d(26Ne, 26Ne)d . The dark blue shaded area with fewer counts is selected to
highlight the reaction d(26Ne, 27Ne∗ → 26Ne+ n)p where the neutron was undetected

using TIARA to study 21O via (d,p) with a beam of 20O [84] was also designed
to measure the (d, t) reaction to 19O at the same time. The (d, t) measurements
[85, 86] employed the telescopes of MUST2 [55] which were mounted at the angles
forward of the TIARA barrel (cf. Fig. 3.14). The gamma-ray coincidence measure-
ments with EXOGAM allowed new spin assignments as well as the spectroscopic
factor measurements for 19O states [85, 86]. Any studies with (d, t) are immedi-
ately useful for comparing to the sorts of knockout studies described in Sect. 3.2.4.
The work of Ref. [84] was able to take the additional step of combining the spec-
troscopic factors measured for (d,p) and (d, t) from 20O. In an analysis based on
sum rules and the formalism of [87] and [88], it was possible to derive experimental
numbers for the single particle energies for this nucleus. The values were in good
agreement [84] with the effective single particle energies of the USDA and USDB
shell model interactions for the sd-shell obtained in Ref. [89]. The previously dis-
cussed experiment using a beam of 26Ne [75, 76] used the same TIARA + MUST2
experimental setup as the 20O experiment. The data for the (d, t) reaction from 26Ne
are still under analysis [90] but an interesting feature here is that the (p, d) reaction
was also able to be measured at the same time. The separation experimentally of
the d and t products of the (p, d) and (d, t) was possible in MUST2 with a suitable
combination of time-of-flight identification and kinematical separation.

3.4.9 Taking into Account Gamma-Ray Angular Correlations
in (d,p)

It is well known that gamma-ray angular correlations will be observed for gamma-
rays de-exciting states that are populated in nuclear reactions. These correlations
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have been widely exploited to reveal information about transition multipolarities and
mixing, and hence to deduce spin assignments. For a nucleus produced in a reaction,
and having some spin J , the angular distribution of gamma-rays measured relative
to some z-axis (such as the beam direction) will depend on the population distribu-
tion for the magnetic substates mj =−J up to +J . If J = 0, the gamma-rays will
necessarily be isotropic. However, for other J -values the population of substates
will be determined by the reaction mechanism and other details of the reaction.
Thus, in (d,p) reactions for example, the gamma-ray angular distribution can de-
pend on details such as the angle of detection of the proton. Certain simplifications
can be made. For example, if J = 1/2 then, for an unpolarised incident beam, and
for protons detected symmetrically around zero degrees (with respect to the beam)
the gamma-rays will necessarily be isotropic. Historically, experiments performed
with stable beams and targets were designed to restrict the detection parameters in
such a way as to simplify the angular momentum algebra, so as to remove any need
to understand the magnetic substate populations, and hence the reaction mechanism,
in detail. One of the most widely used classifications for angular correlation exper-
iments are the Methods I and II of Litherland and Ferguson [91]. These methods
are discussed in some detail in various texts, for example Ref. [92]. A simple and
relevant example of the application of Method II is a study of the 26Mg(d,pγ )27Mg
reaction, in which the spins of the first three states in 27Mg were deduced from the
measured gamma-ray angular correlations [93]. Method I of Litherland and Fergu-
son involves measuring a γ –γ angular correlation relative to a particular fixed angle
for the first gamma-ray. The quantisation axis is defined by the direction of the in-
cident beam. Method II, the more relevant here, is to measure a particle-γ angular
correlation where the outgoing particle from the reaction is measured at either 0◦ or
180◦. This limits the orbital magnetic quantum numbers of the projectile and ejec-
tile to be m� = 0 and the consequences of this eliminate the need for any detailed
knowledge of the reaction in order to know the substate populations for the final
nucleus.

In the present work, we consider a more general situation where we retain one
major simplification, namely the cylindrical symmetry of the particle detection,
around the beam axis. The discussion is based around the previously discussed ex-
periment using a 25Na beam to study (d,p) reactions populating states in 26Na
[71]. The SHARC experimental setup (cf. Fig. 3.23) gives essentially cylindrically
symmetrical detection of the protons. The simplification that is produced by this
symmetry in the angular description of the angular correlation is dramatic and is
described in Sects. III.E and III.F of the article by Rose and Brink [94]. Rose and
Brink define an alignment condition which means that w(−M1) = w(M1) for all
values of the magnetic substate quantum number M1 of the emitting nucleus with
spin J1. Here, w is the weight (i.e. population probability) for a given magnetic
substate and is subject to the normalisation

∑
M1

w(M1)= 1.
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As described in their method 2 of Sect. III.F, entitled the alignment is achieved by
a particle-particle reaction, the alignment condition will be achieved if the out-
going particle is detected with cylindrical symmetry (assuming that the beam and
target particles are unpolarised). Method II of Litherland and Ferguson is simply a
very restricted instance of this stipulation. The results used here to describe angular
correlations are taken from Rose and Brink’s article [94], and they have also been
summarised and discussed in the book by Gill [95].

Suppose we have an experiment where the outgoing particle (for example, the
proton in a (d,p) reaction) is detected in a cylindrically symmetric fashion at some
particular angle with respect to the beam direction. Let the spin of the excited state
be J1. Suppose also, for simplicity, that the gamma-ray transition by which the ex-
cited state decays is a pure transition of a particular mulitpole L (the more gen-
eral cases of mixed multipolarity transitions with a mixing ratio δ are discussed in
Refs. [94, 95]). If a gamma-ray detector with a fixed solid angle were then to be
moved sequentially to various angles θ with respect to the beam direction, then the
angular distribution observed for the gamma-rays would be given by Eq. (3.38) of
Ref. [94],

Wexp(θ)=
∑
K

aKPK(cos θ)

where it can be shown thatK runs from 0 to 2L and is even, the PK are the Legendre
polynomials and the aK can be calculated (as described below) provided that we
know the magnetic substate populations of the initial state J1 and the spin of the final
state J2. Outside of the summation, there will also be an additional factor, usually
denoted A0, to normalise W to the data. The definition of W(θ) is chosen so that
isotropic emission corresponds toW(θ)= 1. Note that this implies that the constant
term in the expansion is always a0 = 1. The number of gamma-rays in total that are
emitted at an angle θ into an angular range dθ is given byW(θ)×2π sin θdθ . In the
case of a transition with pure multipolarity (i.e. with a mixing parameter of δ = 0)
Eq. (3.47) of Ref. [94] states that the theoretical form for the angular distribution is
given by

W(θ)=
∑
K

BK(J1)×RK(LLJ1J2)× PK(cos θ)

where the RK are independent of the reaction mechanism and basically contain
coefficients to describe the angular momentum coupling. The expression for RK is
given by Eq. (3.36) of Ref. [94],

RK
(
LL′J1J2

)= (−)1+J1−J2+L′−L−K ×
√
(2J1 + 1)(2L+ 1)

(
2L′ + 1

)
× (
LL′1− 1 |K0

)×W (
J1J1LL

′;KJ2
)

where the final two terms are the Clebsch-Gordon coefficient and the Racah W-
coefficient describing the indicated angular momentum couplings. These coeffi-
cients may be obtained from tables or recursion formulae or from a suitable com-
puter code such as Ref. [96]. In the present case, for a pure multipolarity, we have
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L′ = L. It is the BK coefficients that contain the information from the reaction
mechanism, via the magnetic substate population parameters, w(M1). The expres-
sion for BK is given by Eq. (3.62) of Ref. [94],

BK(J1)=
M1=J1∑

M1=0 or 1/2

w(M1)× ρK(J1M1)

where the statistical tensor coefficients ρK are given by

ρK(J1M1)= (2− δM1,0)× (−)J1−M1 ×√
2J1 + 1× (J1J1M1 −M1 |K0)

and the final term is again a Clebsch-Gordon coefficient. For most normally-arising
cases, the values of ρK and RK are tabulated in the appendix of Ref. [94]. The above
description has followed exclusively the formulation of Rose and Brink [94]. Other
authors have also presented formulae to describe these angular correlations, but it
should be remembered that the different authors often adopt different phase conven-
tions, etc., and hence the tables of symbols appropriate to one description can not
be assumed to be appropriate for a different description: one particular formulation
must be used consistently. Also, in Ref. [94] the formalism is extended to the case
where a gamma-ray cascade occurs, and the second (or subsequent) gamma-ray is
the one that is observed. In this case, as given by Eq. (3.46) of Ref. [94], the RK co-
efficient in the expression for W(θ) is replaced by a product of coefficients UKRK
where UK depends on J1 and J2 for the initial gamma-ray transition and RK de-
pends on J2 and J3 for the second gamma-ray transition. The extension to a longer
gamma-ray cascade is straightforward.

Thus, if the spins of the states are known, it is possible to calculate the aK coeffi-
cients, a2, a4, . . . , of the Legendre polynomials in the gamma-ray angular distribu-
tionW(θ) provided that the magnetic substate weights w(M1) are known—at least,
for pure multipolarity transitions. These expressions all rely on the particle detec-
tion being cylindrically symmetric at some angle (or range of angles) with respect
to the beam direction. This ensures that w(−M1)=w(M1) for allM1.

The values of the population parameters w(M1) depend on the reaction mecha-
nism and, in general, on the angle of the particle detection. An ADWA calculation
for a (d,p) reaction can be used to calculate the population parameters w(M1) and
their evolution with the detection angle of the proton. Examples of this are shown
in Fig. 3.27, for the (d,p) study discussed above, using a beam of 25Na at 5 A MeV
[71]. The different panels correspond to different assumptions about the final or-
bital for the transferred neutron, and also for the final spin in 26Na. The different
panels are for � transfers of � = 0,1,2 and 3. The different lines are for different
values of M1 from 0 to J1. The main point to note is that in general the popula-
tions change dramatically, for different angles of observation. The obvious counter
example is the panel for s1/2 transfer. The symmetry imposed by s-wave transfer
forces all five substates, from M1 = −2 to +2 to have equal weights of 0.2 at ev-
ery observation angle and the gamma-ray emission will always be isotropic in this
case.
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Fig. 3.27 Calculations of magnetic substate population parameters as a function of centre of mass
angle, performed using the ADWA model with the code TWOFNR [16]. The calculations all sup-
pose a final state at 2.2 MeV excitation, formed in the (d,p) reaction with 25Na to make 26Na. The
orbital into which the neutron is transferred is indicated, along with the assumed final state spin. It
can be seen that, in general, the populations vary dramatically. In the experiment, centre of mass
angles out to approximately 30◦ were studied

In Fig. 3.28 the gamma-ray angular distributions determined by the substate pop-
ulations are plotted, for the upper right hand case in Fig. 3.27, namely 1p3/2 trans-
fer populating a hypothetical 4− state at 2.2 MeV excitation energy in 26Na. The
gamma-ray decay is assumed to be a pure dipole decay to the 3+ ground state.
Since the multipolarity of this decay is L = 1, the maximum value of K for the
aK coefficients is 2. In the centre of mass frame (rest frame) of the emitting nu-
cleus, the gamma-ray angular distribution with respect to the beam axis is given
by a constant term plus a term proportional to a2P2(cos θ), and the value of a2 de-
pends on the detection angle of the proton. It is assumed that, for a given proton
angle θ (proton) with respect to the beam direction, the protons are detected with
cylindrical symmetry at all polar angles, φ. For the centre of mass gamma-ray an-
gular distributions, the functions are necessarily symmetric around 90◦. The three
curves intersecting the axis higher up at θ = 0 are plotted with the horizontal axis
representing the gamma-ray angle as measured in the laboratory frame. There is a
focussing of the gamma-rays towards zero degrees, due to the relativistic headlight
effect as discussed in Sect. 3.4.4.
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Fig. 3.28 Gamma-ray angular distributions for different detection angles θcm (proton) for the pro-
ton from (d,p). Calculated for 25Na incident on deuterons at 5 A MeV, with 1p3/2 transfer pop-
ulating a hypothetical 4− state at 2.2 MeV excitation energy. For the three symmetric curves, the
horizontal axis shows the gamma-ray angle in the centre of mass frame of the emitting nucleus.
For the other three curves, the horizontal angle is the gamma-ray angle measured in the laboratory,
with respect to the beam direction. The proton centre of mass angles are (a) 10◦, (b) 20◦, (c) 30◦

In Fig. 3.29, the differential cross sections in the laboratory frame are shown, for
the population of states in 26Na via the (d,p) reaction in inverse kinematics. The
curves for � = 0,1,2 and 3 show the expected movement of the main peak pro-
gressively further away from 180◦ as � increases. The parallel curves with the lower
cross sections are actually the computed curves, assuming a gamma-ray coincidence
requirement. The angular distributions for a gamma-decay to the ground state were
computed using TWOFNR and the ADWA model, for each proton laboratory an-
gle. The gamma-ray angular distributions were then integrated over the appropriate
range of angles, corresponding to the laboratory angles spanned by the TIGRESS
detectors in the experiment [71]. The relativistic aberration effect was also taken
into account. The important point here is that the curves, whilst not perfectly paral-
lel, are very little modified in shape from the ungated curves, i.e. those that have no
coincidence requirement. This means that the experimental data can simply be cor-
rected for the measured efficiency of the gamma-ray array and then compared with
the unmodified ADWA calculations. This simplification was achieved in this exper-
iment by the large angular range spanned by the gamma-ray array, which meant
that the various changes in the angular distributions of the gamma-rays had little net
effect after integration. The slight distortions that do occur are negligible (in this
case) compared to the statistical errors in the data points and to the inevitable dis-
crepancies that typically occur, between the theoretical and experimental shapes of
the differential cross sections. The results from this experiment [71] are currently
being prepared for publication.
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Fig. 3.29 Differential cross sections in the laboratory frame, calculated for the (d,p) reaction
leading to four different states in 26Na for an experiment at 5 A MeV, in inverse kinematics. Pairs
of almost parallel curves are shown for (a) 1s1/2 transfer to a 2+ state at 0.233 MeV, (b) 1p3/2
transfer to a hypothetical 4− state at 2.2 MeV, (c) 0d3/2 transfer to a 2+ state at 0.407 MeV,
(d) 0f7/2 transfer to a hypothetical 6− state at 2.2 MeV in 26Na. In each case, the upper curve is
the ADWA calculation and the lower curve is the calculated curve for a gamma-ray coincidence
requirement (see text)

3.4.10 Summary

Section 3.4 was headed examples of light ion transfer experiments with radioac-
tive beams and in this section a range of different experimental approaches have
been reviewed. With a relatively light projectile such as 11Be it was possible to
make all of the detailed spectroscopic measurements using the beam-like particle.
For the alternative approach using a silicon array for the light (target-like) particle,
the TIARA array and subsequent developments such as T-REX and SHARC were
described. Gamma-ray detection was shown to be useful, or in many cases essen-
tial, in order to resolve different excited states and to identify them on the basis of
their gamma-ray decay pathways. Hence, the related issues of Doppler correction
and angular correlations were discussed. The use of a detector centred at zero de-
grees for the beam-like reaction products was shown to be a great advantage. Whilst
a large-acceptance spectrometer such as VAMOS gives superior performance in-
cluding full particle identification, it was shown that even a simple detector such as
the trifoil can substantially assist in the reduction of background. The background
arises from compound nuclear reactions induced by the beam on contaminant mate-
rials in the target, such as carbon. A common target choice is to use normal (CH2)n
or deuterated (CD2)n polythene self-supporting foils. The option of using a heli-
cal orbit (solenoidal) spectrometer instead of a conventional silicon array, for the
light particle detection, was described. An example of the use of a cryogenic tar-
get of deuterium was included: in the example described, the target was thick and
largely absorbed the low energy target-like particles, but it is worth noting that there
is research aimed at producing much thinner cryogenic targets that could be used
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with light particle detection. Finally, an important different approach was described,
wherein the target thickness is essentially removed as a limitation because the target
becomes the detector itself. This is sometimes called an active target. With a time
projection chamber (TPC) such as MAYA, the fill-gas of the detector includes within
its molecules the target nuclei, and the measurements make it possible to reconstruct
the full kinematics of the nuclear reaction in three dimensions. This makes an active
target the ideal choice for very low intensity beams, where a thick target is indis-
pensable. With more development to improve the resolution and dynamic range, this
type of detector could eventually have the widest applicability of all experimental
approaches.

3.5 Heavy Ion Transfer Reactions

For the transfer of a nucleon between two heavy ions, there is an important selec-
tivity in favour of certain final states which allows the spins of the final states to
be deduced. This is known as j>/j< selectivity because it can tell us whether the
final orbital for the transferred nucleon has j = �+ 1/2 or j = �− 1/2. The origin
of the effect is two-fold [97]. Firstly, a heavy ion at the appropriate energies will
have a small de Broglie wavelength because of its large mass, and hence its path
can be reasonably described as a classical trajectory. Secondly, the transfer must
take place in a peripheral encounter between projectile and target because a smaller
impact parameter will result in a strongly absorbed compound nuclear process and
a larger impact parameter will keep the nuclei from interacting except through the
large repulsive coulomb interaction. Therefore, we can consider classical trajecto-
ries for peripheral transfer and take into account quantum mechanical factors in a
semiclassical fashion. Of course, a full quantum mechanical treatment using the nor-
mal reaction theories is possible. The advantage of the semiclassical model is that it
allows the origins of the particular selectivity in heavy ion transfer to be understood
more readily.

3.5.1 Selectivity According to j> and j< in a Semi-classical Model

The semiclassical model for nucleon transfer between heavy ions has been described
by Brink [98] and is represented in Fig. 3.30. At the moment of transfer, the mass
m has some linear momentum in the beam direction due to the beam velocity υ and
also due to the rotational motion of m around M1. Just after the transfer, it is orbit-
ingM2 which is at rest, and all of the linear momentum is due to the orbital motion.
The initial and final linear momenta should be approximately equal by conserva-
tion of momentum. Quantum mechanically, they need not be exactly equal because
of the uncertainty in momentum introduced by the spatial uncertainty in the pre-
cise point of transfer as measured in the beam direction (which can be estimated).
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Fig. 3.30 Sketch of the
transfer of a mass m from the
projectileM1 to the targetM2
in a heavy ion collision,
showing the variables used to
derive the Brink matching
conditions [98] (see text)

A similar condition can be formulated for the angular momentum of the transferred
mass m. Before the transfer, this has contributions from the relative motion between
the two colliding heavy ions and from the internal orbital angular momentum of the
transferred nucleon. These are the only parts that change: the former due to the ad-
justments in mass and possibly charge, and the second due to the change of orbital.
Once again, the initial and final values should be almost equal.

The two kinematical conditions given by Brink [98] are:

�k = k0 − λ1/R1 − λ2/R2 ≈ 0

�L= λ2 − λ1 + 1

2
k0(R1 −R2)+QeffR/�υ ≈ 0

where the orbital angular momentum and projection on the z-axis for the transferred
particle are given by (�, λ) with subscripts 1 and 2 for before and after the transfer,
respectively. The quantity Qeff is equal to the reaction Q-value in the case of neu-
tron transfer, but otherwise has an adjustment due to changes in Coulomb repulsion:
Qeff =Q−�(Z1Z2e

2/R). The beam direction is y and the z direction is chosen
perpendicular to the reaction plane. A further pair of conditions arise from the re-
quirement that the transfer should take place in the reaction plane, where the two
nuclei meet, and hence the spherical harmonic functions Y�m should not be zero in
that plane:

�1 + λ1 = even

�2 + λ2 = even.

The two kinematical conditions arising from linear momentum and angular mo-
mentum conservation will each, separately, imply a particular well matched angular
momentum value, for a given reaction, bombarding energy and final state energy
(Q-value). Alternatively, for a given �-transfer they will each imply a particular ex-
citation energy at which the matching is optimal. If the values implied by the two
equations are equal, then the reaction to produce a state of the given spin and exci-
tation energy will have a large cross section (if such a state exists, with the correct
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structure in the final nucleus). If the two values are not equal, then the cross section
will be reduced by an amount that depends on the degree of mismatch.

3.5.2 Examples of Selectivity Observed in Experiments

A detailed inspection of the Brink matching conditions for�k and�L, given above,
implies that a reaction with a large negative Q-value will favour final states with high
spin, or more specifically a large value of λ2 in the notation of Fig. 3.30. This arises
because the conservation of linear momentum favour a high value of λ2 + λ1 and
the conservation of angular momentum implies a large value for λ2 − λ1. This se-
lectivity, which occurs for heavy ion transfer with a negative Q-value, is discussed
in detail by Bond [99] with a derivation in terms of DWBA formalism. As further
noted by Bond [97] the large negative Q-value will imply that the projectile has re-
duced kinetic energy after the collision and hence is slowed down, which implies a
significant transfer of angular momentum. Being heavy ions, the angular momen-
tum of relative motion is large, and hence a relatively small reduction corresponds
to transfer into a relatively high spin orbital. In Fig. 3.31 for the (16O,15O) reaction,
which has a large negative Q-value, the neutron is transferred from the 0p1/2 orbital.
For the best matching, there will be a maximum �-transfer which implies that the
nucleon will change λ, i.e. the projection of the angular momentum in the direction
perpendicular to the reaction plane, as much as possible. For example, from a 0p1/2
orbital (with orbital angular momentum �= 1) and an initial projection of m� =−1
(which implies also that ms =+1/2) the transfer will favour m� =+� for a high-�
orbital in the final nucleus. It is reasonable to assume that there is no interaction in
the transfer to change the direction (projection) of the intrinsic spin of the nucleon.
Therefore the relative directions of orbital and spin angular momentum for the nu-
cleon become swapped in the transfer process. The preferred transfer in this case is
from �− 1/2 (denoted as j<) to �+ 1/2 (denoted as j>). In general, if the Q-value
is negative, the transfer from an orbital with j< (j>) will favour the population of
orbitals with j> (j<) in order to achieve the largest change in λ for the transferred
nucleon. Therefore, in Fig. 3.31, the reaction (12C, 11C) shows the opposite selec-
tivity to (16O, 15O). In the upper panel we see a favouring of the (j>) 7/2− state
corresponding to the 1f7/2 orbital, and a relative suppression of the (j<) 9/2− state
corresponding to the 0h9/2 orbital. This selectivity is reversed in the lower panel,
and we also see that the (j>) 13/2+ state (corresponding to the 0i13/2 orbital) fol-
lows the (j>) 7/2− in becoming weaker relative to the favoured (j<) 9/2− state.

The discussion for single nucleon transfer can be simply extended to include
cluster transfer [98]. A further step is to describe reactions in which nucleons are
transferred in both directions, to and from the projectile, or in two independent
transfers in the same direction. In the work of Ref. [100], the ideas developed by
Brink [98] and described by Anyas-Weiss et al. [19] are extended to describe the
reactions (18O, 17F) and (18O, 15O) where one of the two steps is the transfer of a
dineutron cluster. The trajectories of the transferred particles between the two heavy
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Fig. 3.31 Illustration of the
j>/j< selectivity exhibited in
heavy ion transfer when the
Q-value is large and negative.
The data are for the reactions
(16O,15O) and (12C,11C) on a
148Sm target with the same
beam velocity, defined by a
beam energy of 7.5 A MeV.
The selectivity is reversed
due to the parent orbitals of
the transferred neutron being
0p1/2 (j<) and 0p3/2 (j>)
respectively. Therefore the
upper panel favours j> states
and the lower panel favours
j< states. The two
highlighted peaks correspond
to populating the 0h9/2 (j<)
and 1f7/2 (j>) orbitals. The
biggest peak (unshaded)
corresponds to the 0i13/2 (j>)
orbital. Figure adapted from
Ref. [97]

ions are represented in Fig. 3.32 for the favoured (well matched) and unfavoured
trajectories. The proton is required in each case to make a transition from j< to
j> in a stretched trajectory as shown, so as to form the 5/2+ ground state in 17O,
which was observed in the experiment [100]. Figure 3.32(a) shows that the favoured
final states in 19N will have a total spin where 1/2 from the 0p1/2 proton is added
collinearly with the orbital angular momentum transferred by the dineutron cluster.
This type of selectivity was observed in the experiment and was used to interpret the
states populated in 19N and 21O. In the case of the 21O there has been independent
verification of the interpretation via the previously-mentioned study of the (d,p)
reaction with a beam of 20O using TIARA [84].

3.6 Perspectives

It is always dangerous to speculate about the future directions for the development
of instrumentation or experimental techniques. The experimental devices described
here are all likely to deliver a range of new results in nucleon transfer, as new facil-
ities and more beams at the appropriate energies become available. It is, however,
perhaps worth taking note of some of the new developments that might be expected.
These developments will in part be enabled by an increased capability to deal with
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Fig. 3.32 The semiclassical model of Brink [19, 98] can be extended to two-step transfer reactions,
such as this (18O, 17F) reaction on a target of 18O (figure adapted from Ref. [100]). The reaction
is modelled as a dineutron transfer from the 18O projectile and the pickup of a proton from the
18O target: (a) the strongly favoured senses for the two transfers, (b) the less favoured transfer
directions

Fig. 3.33 Preliminary design for a new array GASPARD [101] which would represent a new gen-
eration of device for the approach using a compact particle array with coincident gamma-ray de-
tection. Multilayer highly segmented particle detectors with enhanced particle identification prop-
erties, plus the ability to use cryogenic targets, are amongst its advantages

large numbers of electronics channels, due to innovations in electronics design. One
development is to take the simple idea of a highly efficient silicon array (i.e. with
a large geometrical coverage) mounted inside a highly efficient gamma-ray array
(as adopted by TIARA, SHARC, T-REX, ORRUBA, . . .) and improve it. This is
the aim of GASPARD [101] which is an international initiative based originally
around the new SPIRAL2 Phase 2 facility but also able to be deployed potentially
at HIE-ISOLDE. A preliminary design is shown in Fig. 3.33. The particle detection
is based on one to three layers of silicon, depending on angle. The segmentation
of the silicon is sub-millimetre, but with the detectors still able to supply particle
identification information based on the pulse shape. The array is sufficiently com-
pact to fit inside newly developed gamma-ray arrays such as AGATA or PARIS.
The geometry is chosen to allow innovative target design, and in particular to have
operation with the thin solid hydrogen target CHyMENE, currently under develop-
ment at Saclay. Another current development is the AT-TPC detector at MSU [102]
which aims to combine the advantages of the active target MAYA and the helical
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spectrometer HELIOS. As noted previously, a key advantage of an active target is
that it can, in principle, remove the limitations on energy resolution (or, indeed the
limitations on even being able to the detect reaction products) that arise from target
thickness. An alternative approach to minimising the target thickness effect is to use
an extremely thin target but to compensate by passing the beam through it many
times, say 106 times. Under certain circumstances, a beam of energy 5–10 A MeV
as suitable for transfer could be maintained and recirculated in a storage ring for this
many revolutions. A thin gas jet target would allow transfer reactions to be studied
in inverse kinematics. The ring could be periodically refilled and the beam cooled,
in a procedure that was synchronised with the time structure of the beam production.
This is one of the ideas behind the proposed operation of the TSR storage ring with
reaccelerated ISOL beams at ISOLDE [103].

In summary, there are some very powerful experimental devices already available
and able to exploit the existing and newly developed radioactive beams. In addition,
there are challenging and exciting developments underway, that will create even
better experimental possibilities to exploit the beams from the next generation of
facilities. Because of their unique selectivity, and because the states that are pop-
ulated have a simple structure that should be especially amenable to a theoretical
description and interpretation, transfer reactions will always be at the forefront of
studies using radioactive beams to extend our knowledge of nuclear structure.
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Chapter 4
Effective Field Theories of Loosely Bound Nuclei

U. van Kolck

4.1 Introduction

Exotic nuclei challenge models constructed for ordinary nuclei, which differ in their
predictions for the positions of the driplines. Near these borders of the nuclear chart,
a nucleus has one or more loosely bound nucleons that can easily be separated from
the rest. In the simplest “halo” or “cluster” configurations, one or more clusters of
tightly bound nucleons (“cores”) are surrounded by a few nucleons at relatively large
distances, which exceed the range of the strong force, r0 ∼ �/mπc� 1.4 fm where
mπ � 140 MeV/c2 is the pion mass. Since in classical mechanics the orbital distance
is given by the range of the force, these loosely bound systems are intrinsically
quantum mechanical and can display a variety of peculiar phenomena. For example,
in a “Borromean” halo, the system is bound even though its subsystems are not.

Nevertheless, loosely bound systems are theoretically simpler than their more
deeply bound counterparts. The reason is a fundamental “decoupling” principle ac-
cording to which physics at a given distance scale is insensitive to the details of
dynamics at much shorter distances. The short-distance dynamics can be captured
instead by a finite number of parameters, whose number depends on the precision
we want to achieve at the scale of interest. For the large distances characteristic of
loosely bound systems, we can take the potential among constituents to be, in a first
approximation, Dirac delta functions. Such a simplification means that systems with
different constituents, say nucleons or atoms, can have very similar dynamics, dif-
fering only in the strength of the delta functions and the relative importance of the
various possible interactions. This “universality” means that one can explain phe-
nomena across subfields of physics using the same theoretical concepts and tools.
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The decoupling principle has underlaid physics research from its beginning, and
for the last thirty years or so has been formalized in the concept of effective field
theories (EFTs). EFTs provide a systematic method to account for short-range dy-
namics even when the latter is unknown. As such, this principle can be, and of
course has been, applied much more widely than the exotic nuclei of interest in this
school. Even in nuclear physics, its first applications, started some twenty years ago,
have been to distances scales of order r0 [1–10]. We know that the theory of strong
interactions at distances small compared to �/MQCDc, where MQCD ∼ 1 GeV/c2

is the hadronic mass scale, is given by quantum chromodynamics (QCD), a gauge
theory of quarks and gluons. At larger distances QCD is non-perturbative in its cou-
pling constant and more easily described in terms of hadrons. An EFT—“Chiral” (or
“Pionful”) EFT—can be constructed at distances comparable to r0 which includes
pions and correctly incorporates the approximate symmetries of QCD such as chi-
ral symmetry. This EFT forms the basis for a description of all nuclei, and is now
the main input to the rapidly developing “ab initio” methods for the derivation of
nuclear structure and reactions.

For distances much larger than r0, pion exchange can be regarded as a short-
range effect, and nuclear interactions reduce to delta functions and their derivatives.
This “Contact” (or “Pionless”) EFT is relevant for light nuclei because the two-
nucleon scattering lengths—that is, the two-nucleon scattering amplitude at zero
energy—are much larger than r0, for reasons that are not well understood but we
will return to. Large scattering lengths signal loosely bound states, and indeed the
low-energy behavior of the lightest nuclei can be described systematically in this
EFT. Universality means that with relatively small modifications this EFT can be
applied to atomic systems with scattering lengths that are large compared to the Van
der Waals length scale. It also means that a similar EFT—“Halo/Cluster” EFT—can
be constructed for larger loosely bound nuclei, where cores are treated on the same
footing as valence nucleons.

These lectures are an introduction to both the general ideas behind EFTs and the
specific applications to nuclear physics. The first lecture presents the ingredients of
an EFT, articulates the view of the world afforded by EFTs, and gives both classical
and quantum-mechanical examples. The second lecture introduces the Chiral EFT
relevant for ordinary nuclei, and describes some of its features with an emphasis
on the crucial, singular character of pion exchange. In the final lecture I come to
the EFTs most relevant for loosely bound systems, Pionless and Halo/Cluster EFTs.
These lectures are not meant as a comprehensive review of the field, for which I
refer you to, for example, Refs. [11–16]. Instead, they stress basic ideas and some
of the conceptual subtleties and open problems, which are often shoved under the
technical rug weaved by the many successful applications of nuclear EFTs.

4.2 Nuclear Physics Scales and Effective Field Theories

Nuclear physics has a long and venerable history. A large amount of nuclear data
can be described within a picture that emerged in large part before QCD:
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• nuclei are essentially made out of non-relativistic nucleons with two isospin states
(protons and neutrons) of nearly equal mass mN � 940 MeV, which interact via
a potential;

• the potential is mostly two-body, with an important one-pion-exchange compo-
nent, but there is evidence for smaller three-body forces;

• isospin is a good symmetry, except for electromagnetic interactions, a sizable
breaking in the two-nucleon scattering lengths, and other, smaller effects—for
example, the neutron-proton mass difference is just mn −mp � 1.3 MeV;

• external probes, such as photons, interact mainly with each nucleon separately,
although there is evidence for smaller few-nucleon currents.

In contrast, QCD with the lightest quarks has almost opposite features:

• up and down quarks have an average (“current”) mass m̄= (mu +md)/2 that is
relatively small, so that they can easily be relativistic, and interact via (relativistic)
gluon exchange;

• the interaction is a multi-gluon, and thus multi-quark, effect;
• isospin symmetry is not obvious since the relative mass splitting ε = (md −
mu)/2m̄∼ 1/3 is not particularly small;

• external probes can interact with the collective of quarks called a hadron.

This situation automatically begs a question that is now central to the field: how does
nuclear structure emerge from QCD? This is a contemporary version of a problem
that has defied legions of researchers for decades: what holds the nucleus together?

In these lectures we will see how EFTs help us answer this question. The key
to start tackling this problem lies on its multi-scale character. If you go through the
tables of the Particle Data Book [17] you will see that hadron masses cluster—with
a few notable exceptions to which we will come back in the next lecture—in the
few-GeV region. This observation suggests that QCD has an intrinsic mass scale
MQCD ∼ 1000 MeV/c2. On the other hand, when you put A nucleons together to
form nuclei, you find, very roughly, binding energies per nucleon B/A ∼ 10 MeV
and charge radii 〈r2〉1/2ch /A1/3 ∼ 1 fm. This is consistent with a non-relativistic dis-
persion relation where the typical binding momentum isMnucc∼ 100 MeV/c. Thus,
we face three energy scales,

MQCDc
2 ∼mNc2 � 1000 MeV, Mnucc

2 ∼ 100 MeV,

M2
nucc

2/MQCD ∼ 10 MeV.
(4.1)

There is, of course, a very familiar multi-scale problem: the H atom, or more
generally, a two-body Coulombic state with reduced mass μ. The Hamiltonian can
be written in the center-of-mass frame with relative coordinate r and momentum p
as

H =
(
p2

2μ
− α�c

r

)[
1+O

(
α; p

2

μ2c2
; �

2

μ2c2r2

)]
, (4.2)

where α ≡ e2/4π�c � 1/137 � 1 is the small fine-structure constant. A quick and
dirty way to uncover the scales of the resulting quantum-mechanical states is to say
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that they are characterized by a size r ∼ rat and a momentum p ∼ pat ∼ �/rat , so
that the energy E ∼ �

2/(2μr2
at )−α�c/rat , has a minimum at rat = �/(αμc). There

are thus three energy scales, which for the H atom are

μc2 �mec2 � 0.5 MeV, pat c∼ αμc2 � 3.6 keV,

p2
at /(2μ)∼ α2μc2/2 ∼ 13.6 eV,

(4.3)

whereme is the electron mass. As this very simple analysis shows, the three separate
scales arise from the smallness of α, which also allows a controlled exploration of
the effects of the corrections in Eq. (4.2).

In low-energy QCD, however, there is no obvious small coupling constant. In
contrast to α, which increases (albeit slowly) as the energy scale increases, the anal-
ogous QCD fine-structure constant αs increases as the energy scale decreases, and it
becomes of O(1) around MQCDc2. Hadronic models of low-energy data have also
failed to unveil any small coupling constant. So, for a controlled approach to nuclear
physics we need a method to deal with multi-scale problems that does not rely on
small coupling constants. Such a method is EFT.

4.2.1 Basic Ideas

An EFT is from the outset designed to address physics at the desired resolution
scale, and it substitutes a small ratio of physical scales for a coupling constant as an
expansion parameter. The framework evolved from the work of Weinberg, Wilson,
and many others in the 60s and 70s, and was clearly articulated at the end of the
70s [18]. For a sample of introductions to EFT, see Refs. [19–22].

An EFT puts together in a single formal framework four basic ingredients, a
couple of which are frequently used separately in model building:

1. Relevant degrees of freedom. The degrees of freedom one should use depend on
the resolution we aim for. Although physics is independent of the specific choice
of coordinates, some choices simplify the theoretical description significantly.
Take, for example, a painting by the French Neo-Impressionist master, Georges-
Pierre Seurat. Looking closely, you see that it is made of colorful blobs of paint.
Yet, at the resolution scale relevant for viewing in, say, a museum, the blobs fuse
together in larger-scale images, e.g. a face. Although we can describe any part
of the painting by giving a list of blob coordinates, the same part of the painting
might be more efficiently described by concepts appropriate to the scale of the
larger image, e.g. a mustache. In other words, choose the degrees of freedom that
best fit your problem.

2. All possible interactions. The effective degrees of freedom interact in all pos-
sible ways. Take another example: a system consisting of a satellite around the
Earth, and the nearby Moon. Certainly, there are gravitational interactions be-
tween any two bodies of this three-body system. But there is also an indirect
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effect of the Moon on the satellite motion because of the tidal deformation of the
Earth. On the large distance scale set by the Earth-Moon separation (�384 Mm),
the radii of Earth (�6.4 Mm) and Moon (�1.7 Mm) are small and they can be
well approximated by points where the whole mass of the body is concentrated.
In the point-like picture, the tide-mediated interaction is represented by a three-
body force, which is an effect among three bodies that disappears when any of
the bodies is removed. More generally, whatever is not forbidden is compulsory,
and exists at some level of precision.

3. Symmetries. Symmetries play a fundamental role in physics, which is stressed in
a traditional joke. There are several versions, but they all involve a cow with de-
ficient milk production, two other scientists (typically a biologist and a chemist)
who view the problem as complex, and a physicist who thinks it simple. The
physicist’s solution starts with “First, consider a spherical cow. . . ”. The reason
this joke is well known is that it does capture what we do. In this case, if you
consider two vectors (u,v) used in the description of the cow, spherical symme-
try will ensure that a bilinear combination of them appears in scalar quantities in
the form of the scalar product (u · v) rather than the most general combination
of components (e.g. u1v2). The lesson is that, thanks to symmetries, not every-
thing is allowed. Of course, most of the time symmetries are only approximate,
and indeed the joke often continues, “Next, we treat the head in perturbation the-
ory. . . ”. That is, the other bilinear combinations do appear, but as long as the cow
is pretty healthy, they are preceded by dimensionless parameters which are small
compared to 1, and thus amenable to perturbation theory.

4. Naturalness. This is perhaps the most distinguishing feature of EFTs, adapted
from a principle proposed by ’t Hooft [23]. After relevant scales have been iden-
tified, the remaining, dimensionless parameters are O(1), unless suppressed by
a symmetry. (Recall the cow non-sphericity.) The justification is Occam’s razor:
this is the simplest assumption one can make about an infinite number of interac-
tion strengths. It is crucial for an EFT, because in the absence of large quantities,
we can expect observables to be amenable to an expansion in the small ratio
between the scale characteristic of short-range physics left out of the theory and
the distances of interest—or, alternatively, the inverse of the corresponding mo-
mentum or energy scales. This assumption is, of course, to be revised when nec-
essary. If interactions strengths are found to deviate systematically from it, it is
possible that a particular scale has been left out or misidentified; after we account
for it, naturalness is expected once again. Of course we might expect deviations
for a finite number of interaction strengths anyway, in which case we speak of
fine-tuning and incorporate it in a case-by-case basis.

Let me consider a simple classical example: a light object of mass m near the
surface of a very large body that produces a gravitational acceleration of magnitude
g. Simple experiments at energies E ∼ mgh, where h is the height of the object,
suggest that the important degree of freedom is the position, and that there is an
(approximate) translation symmetry, so that the effective potential Veff is a function
of h only. This description will break down at some energy, which I will call Eund ≡
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mgR. For E � Eund , or equivalently h� R, the most general effective potential
can be written as an expansion

Veff (h)=m
∞∑
i=0

gih
i = const+mgh(1+ ηh+ · · · ), (4.4)

where gi are parameters (g1 ≡ g, g2 ≡ ηg) and I am neglecting quantum corrections
that could give rise to non-analytic h dependence. Naturalness means

mgi+1h
i+1

mgihi
= E

Eund
×O(1)= h

R
×O(1), (4.5)

which in turn implies

gi+1 =O

(
g

Ri

)
. (4.6)

If we carry out very precise experiments we can obtain values not only for g but also
for η and other parameters, testing Eq. (4.6). In fact, given a desired accuracy, we
need only a few terms in this expansion—in daily life only the linear one. Of course
this example is somewhat artificial because we already know, thanks to Newton’s
apple, that, if the large object has mass M and is approximately spherical with a
radius R, it produces a gravitational potential energy

V =−m GM

R + h =m
GM

R2

∞∑
i=0

(−1

R

)i−1

hi. (4.7)

In this case

gi+1 = (−1)i
g

Ri
, g = GM

R2
, (4.8)

so that Eq. (4.6) is indeed fulfilled, and we can identify the breakdown scale R
of the effective theory with the radius of the large body. Still, this simple example
illustrates why naturalness is such a, well, natural assumption: it is not so easy to
come up with situations where Eq. (4.6) would fail. If, say, we had misidentified
the scale R by a factor of O(1), Eqs. (4.4) and (4.6) would still apply. Of course,
in a more realistic case, the lack of exact spherical symmetry of the large body
(say a mountain nearby) manifests itself in a breaking of translation symmetry. This
breaking leads to a dependence of Veff on the other two spatial coordinates, but
the corresponding terms are relatively suppressed by powers of the ratio between a
parameter encoding spherical asymmetry and the large body size—the cow raises
its head again.

It is in the quantum context, however, that EFTs come to full force, because vir-
tual processes explore all possibilities allowed by symmetries. In this context it is
perhaps easiest to think in terms of path integrals. When there are various possibil-
ities for a process, the probability of the outcome is the square of the sum of the
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amplitudes for each possibility, each amplitude being proportional to the exponen-
tial of (i/�) times the Hamilton action. After integrating over momenta, the total
amplitude is expressed in terms of trajectories q(t) in coordinate space as

A=
∫

Dq exp

(
i

�

∫
dtL

(
q(t)

))
, (4.9)

where L is the Lagrangian (not necessarily the classical one. . . ). The measure Dq
stands for the sum over all possible trajectories. To make it well defined, we divide
the time interval for the process in a set of discrete values ti , i = 0, . . . ,N , with
ti+1 − ti ≡ �/(Λc). (More complicated slicings are certainly also possible.) The
action becomes a sum over each time slice and the measure is the well-defined
product of integrals,

∫
Dq =

N−1∏
i=1

∫
dq(ti). (4.10)

This procedure is called regularization and the (momentum) scale Λ is referred to
as the ultraviolet (UV) regulator parameter or cutoff. The classical path arises as the
one that extremizes the action.

But what do we do with Λ? It is something I introduced by hand: psychology
if you will, not physics. Physics is obtained from the S matrix, which is related
to the scattering amplitude or the T matrix. Taking elastic two-particle scattering
for simplicity, in the prototypical experiment two asymptotically free particles ap-
proach with a relative (on-shell) momentum p and scatter into an asymptotically
free state of relative (on-shell) momentum p′, with |p′| = |p| ≡ k from energy con-
servation. The probability for the final state depends on k and the angle θ of p′
with respect to p. It is usually convenient to expand the θ dependence in Legendre
polynomials corresponding to angular momenta l = 0,1, . . . . The coefficients Tl(k)
are the partial-wave amplitudes, which are usually parametrized in terms of phase
shifts δl(k), from which the cross section can be obtained. The poles of Tl(k) in
the complex momentum plane can be of two types: (i) a pole in the imaginary axis,
k = iκB , corresponding to a real (κB > 0) or virtual (κB < 0) bound state of energy
E =−B =−κ2

B/2μ+· · ·< 0; (ii) a pair of poles elsewhere in the lower half-plane,
k =±κR − iκI , κR,I > 0, representing a resonance of complex energy.

The procedure of ensuring observable quantities are independent of the regular-
ization is called renormalization. Depending on the interactions, the most relevant
paths will have structure at a certain time scale, let me call it �/Mc2. Certainly
we want Λ�Mc in order to capture the structure at this scale. But let me sup-
pose we are interested in dynamics over a larger time scale �/mc2 in terms of a
mass scale m� M . In this case we might be satisfied with a smaller cutoff, as
long as Λ� mc. In the coarse-graining procedure of reducing the cutoff—called
renormalization-group (RG) running—we induce errors by approximating trajecto-
ries with fine structure by a coarse set of points. We can mitigate these errors by
keeping in the Lagrangian not only the positions at each slice q(ti), but also the first
derivative (dq/dt)(ti) and higher derivatives, for progressively better accuracy. In
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general, as discussed earlier, we also might want to change our coordinates to a new,
more efficient set which is some function of the older one, q̃(ti )= f (q(ti)). This is
accomplished by introducing

1 =
∏
i

∫
dq̃(ti)δ

(
q̃(ti )− f

(
q(ti)

))≡
∫

D q̃δ
[
q̃(t)− fΛ

(
q(t)

)]
(4.11)

in Eq. (4.9). Inverting the order of integrals we arrive at

A=
∫

D q̃ exp

(
i

�

∫
dtLeff

(
q̃(t)

))
, (4.12)

where, schematically, the effective Lagrangian is

Leff (q̃)=
∑
n,d,m

cndm(M,Λ)O
(
q̃n,

(
dd q̃/dtd

)m)
. (4.13)

Here O represents a combination of various powers of the new coordinate and its
derivatives at the same instant, since we cannot resolve time intervals � �/(Λc)

because of the uncertainty principle. The respective coefficient, cndm, is called a
low-energy constant (LEC), and depends in general not only on the underlying dy-
namics at scaleM but also on the regulator Λ.

In principle the effective Lagrangian can be obtained from the integral over the
original coordinates, but regardless of our ability to do so, the path integral (4.12)
forms the basis for the effective theory. From it we can obtain the T matrices for
various low-energy processes, the goal of effective theory being to write each in a
controlled expansion. Again taking a simple two-body elastic scattering for illustra-
tion, we want that, for k ∼mc,

Tl(k)=
∞∑

ν≥νmin
c̃ν(M,Λ)

(
k

Mc

)ν
Fl;ν

(
k

mc
; k
Λ

)
, (4.14)

where ν is a counting index with a minimum value νmin, the new coefficients c̃ν are
related to the cndm appearing in the Lagrangian, and the Fl;ν are calculable func-
tions of the light scales and the cutoff, which are obtained by solving the dynamical
equations (like the Schrödinger or Lippmann-Schwinger equations) of the theory.
We refer to the terms with ν = νmin as leading order (LO), ν = νmin + 1 as next-to-
leading order (NLO), and so on. Since Λ is arbitrary, the coefficients c̃ν (and thus
the cndm) have to be such as to ensure “RG invariance”,

dTl(k)

dΛ
= 0. (4.15)

The relation between ν and the labels (n, d,m) of the expansion (4.13) is called
power counting. Frequently the least trivial aspect of an effective theory, power
counting is necessary for any predictive power. A truncation of Eq. (4.14) guarantees
that only a finite number of LECs appear, but in principle introduces regularization
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errors. These errors will be relatively small as long as they scale as inverse powers
of k/Λ,

Tl(k)= T (ν̄)l (k)

[
1+O

(
k

Mc
,
k

Λ

)]
,

Λ

T
(ν̄)
l (k)

dT
(ν̄)
l (k)

dΛ
=O

(
k

Λ

)
, (4.16)

with ν̄ denoting the chosen truncation. For this to happen, there need to be enough
LECs at each order to remove non-negative powers ofΛ, otherwise the power count-
ing is not consistent (with the RG). Once we have ensured that errors scale appro-
priately, we want at least Λ�mc and, optimally, Λ�Mc, as in the latter case the
regularization errors are no larger than the errors coming from the incomplete ac-
counting of short-range physics. In fact, as long as regulator errors come in the form
(4.16) one can use a variation of Λ from Mc to very large values as an estimate of
the full truncation error.

So far I have presented the ideas of EFT without invoking the notion of “field”
directly, although historically they were first formalized in terms of relativistic quan-
tum fields. The path q(t) can be thought as a field over time, but closer contact with
field theory arises if we “second quantize” the system, by elevating the wavefunction
ψ to an operator. In the path integral formulation above one replaces

q(t)→ψ(r, t),ψ∗(r, t), t→ r, t, dt→ drdt, (4.17)

so ψ is now a non-relativistic field over the four spacetime coordinates r, t . Rel-
ativity can be introduced by enforcing SO(3,1) invariance, which is most easily
accomplished by employing a field with definite transformation properties under
the Lorentz group. We will return to the connection between relativistic and non-
relativistic field theories in the next subsection. From now on I use units where
� = 1 and c = 1, so the dimensions of mass, energy, momentum, inverse position,
and inverse time are all the same.

The EFT Lagrangian has a form similar to Eq. (4.13), which includes terms with
an arbitrary number N of fields and their derivatives. It is usually convenient to dis-
cuss quantum field theory starting from an expansion around the free theory and, in
non-perturbative situations, “resum” parts of this expansion. The free terms define
the “canonical (mass) dimension” of the fields. With our choice of units, the action
is dimensionless so each term in the Lagrangian has mass dimension 4. If an oper-
ator O has canonical dimension D, the LEC has mass dimension 4 −D. The EFT
involves interactions with arbitrary D. The terms in the expansion of the exponen-
tial of the action have a correspondence to more intuitive Feynman diagrams, which
can be thought as representing the propagation of particles interspaced with their
interactions. The former is represented by lines (“propagators”) carrying a four-
momentum and the latter by line intersections (“vertices”) where four-momentum is
conserved, each associated with a specific factor. A closed loop implies a free four-
momentum that is integrated over. The corresponding integrals are well-defined in
general only after regularization, which removes the contributions from high mo-
menta at the cost of the arbitrary UV regulator parameterΛ. Details can be supplied
by a good book on quantum field theory, such as Ref. [24].
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In these terms, the recipe for an EFT is essentially:

1. identify the relevant degrees of freedom (represented by fields) and symmetries
(groups of discrete or continuous, global or local transformations);

2. construct the most general Lagrangian with these ingredients;
3. postulate a power counting to truncate physical amplitudes;
4. run the methods of field theory to calculate amplitudes, that is, compute Feyn-

man diagrams for momenta Q<Λ (regularization) and relate the LECs to ob-
servables so that the latter are independent of Λ (renormalization);

5. if this is achieved and the now well-defined expansions are well behaved, declare
victory; otherwise, return to step 3, or earlier if necessary.

Renormalization in step 4 is crucial. Short-range physics appears in both the
high-momentum components of loops and in the LECs, and changes in Λ merely
shuffle it from one to the other. RG invariance effectively guarantees that the relevant
momenta in diagrams are set by the external momenta, so that, as long as the external
momenta are relatively small, successive terms in the expansions of the various
amplitudes will be smaller and smaller.

The observables used as input in step 4 can be experimental data or the result of
a calculation in the underlying theory, if the latter is known and can be solved in the
low-energy domain of the EFT. In this case we speak of matching the EFT to the
underlying theory. When the EFT shares the symmetries of the underlying theory
this matching must be possible, if one accepts Weinberg’s “theorem” [18]:

The quantum field theory generated by the most general Lagrangian with some assumed
symmetries produces the most general S matrix incorporating quantum mechanics, Lorentz
invariance, unitarity, cluster decomposition and those symmetries, with no further physical
content.

This “theorem” has not been proved in general but to my knowledge no counterex-
amples are known. In specific examples, such as the one in the next subsection, one
can verify that this “theorem” works.

Weinberg’s “theorem” embodies the most important difference between an EFT
and simple models. Models can be very useful in guiding step 1 (and sometimes 3),
but they fail to be fully consistent with all the low-energy consequences of the un-
derlying theory, which is only guaranteed with step 2. Sometimes models do contain
interactions with arbitrarily many derivatives in the form of ah hoc “form factors”
attached to vertices with otherwise no (or few) derivatives. These form factors, in-
volving a finite number of parameters (usually one), play the dual role of represent-
ing a physical effect (the coordinate profile of a particle) and of regulating integrals.
In EFT the physics of particle structure is represented by the higher-derivative inter-
actions, each with its own LEC, while the infinities in integrals are avoided with an
unphysical regulator. (Without step 4, the regulator would become indistinguishable
from an universal form factor and observables would depend onΛ in addition to the
infinite number of LECs that parametrize the most general Lagrangian.) A model of
the underlying theory, if it includes the right symmetries, can also be represented at
low energies by the EFT, with specific relations between the LECs given by the lim-
ited number of parameters of the model (including form-factor parameters, if any).
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But, as long as RG invariance has been achieved, the arbitrarily higher-derivative
interactions ensure that the EFT represents all models with the right symmetries.
When the underlying theory is not known, or cannot be solved, EFT provides a
model-independent approach to data.

Even when the matching of the EFT to the underlying theory can be done, there
are advantages in using the EFT at low energies, because it is inefficient to keep
explicit in the theory very massive degrees of freedom instead of emergent, low-
mass states. No progress in nuclear theory will make it preferable to calculate atomic
and molecular properties directly from a collection of protons and neutrons, rather
than from a point nucleus with a few relevant parameters (which in turn can be
calculated from a collection of protons and neutrons). The heavy degrees of freedom
are “integrated out”, their contribution subsumed in the LECs.

If the EFT is natural, one expects no cancellations between the bare LECs and
the high-momentum components of loops, at least for changes in Λ of O(1). Now,
loops typically come with factors of 4π . For a LEC c of an operator of canonical
dimension D involving N fields, it is convenient to define a “reduced LEC” that is
dimensionless and includes some factors of 4π ,

cR ≡MD−4c/(4π)N−2. (4.18)

It can be inferred [25, 26] from examples based on perturbative matching that cR
is usually of the order of the product of reduced couplings of the underlying theory
that generate it. Examples of this “naive dimensional analysis” (NDA) will be given
later, starting in the next subsection. There is no guarantee that it will always work,
but it is usually at least a good first guess on which to base a power counting.

For an effective field theorist, nature has the onion-like structure of a sequence
of EFTs ordered according to energy (or inverse distance) scale. (Whether this se-
quence ends at some high energy is metaphysics.) Thus, EFT provides a framework
for both reductionism and emergence in physical theories. This and other philosoph-
ical implications of EFT are lucidly discussed in Refs. [27, 28].

In the remaining lectures I will focus on the EFT at a few GeV and its strong-
interaction sector as a starting point for traditional nuclear physics. It will prove
useful, however, to spend some time in the next subsection with a simpler EFT,
which provides an archetype for the approach we will follow in nuclear physics.

4.2.2 An Example: NRQED

Let me now return to atoms. At a momentum scale comparable to the electron mass,
the relevant degrees of freedom are electrons and nuclei interacting through the
exchange of photons, as given by quantum electrodynamics (QED). As we have seen
above, atomic bound states exist at a much smaller momentum scale pat ∼ αme .
Now I discuss in qualitative terms an EFT tailored to this scale [29], termed Non-
Relativistic QED (NRQED) because even electrons move slowly. I will stress the
features that find similar expression in the Chiral EFT of nuclei in the next lecture.
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Fig. 4.1 Part of a Feynman diagram where an on-shell fermion of momentum p first interacts
with a real or virtual photon of incoming momentum q , then propagates with momentum p + q .
A fermion (photon) is denoted by a solid (wavy) line. The shaded areas represent parts of the
diagram whose details are not important now

For simplicity, let me take at the higher scale a single spin-1/2 fermion repre-
sented by a Dirac field ψ of mass m and charge Qψe, interacting with a spin-1
boson Aμ, subjected to Lorentz, parity, time-reversal, and U(1) gauge invariance.
As it is well known, the latter is most easily enforced using gauge-covariant deriva-
tives:

Dμψ = (∂μ + ieQψAμ)ψ, Fμν = ∂μAν − ∂νAμ. (4.19)

The underlying Lagrangian is thus

L =−1

4
FμνF

μν + ψ̄(i/D −m)ψ + · · · , (4.20)

where ψ̄ = ψ†γ0 and /D = γμDμ in terms of the Dirac matrices γμ. From the
terms shown explicitly in this Lagrangian we can read off the fermion and gauge-
boson propagators and an interaction vertex, as discussed in textbooks [24]. More-
derivative interactions, represented by the “. . .”, give contributions suppressed by
powers of momentum over the mass scale of the physics we have integrated out
(such as heavier fermions and weak-gauge bosons).

If we are only interested in processes with external momenta Q� m, we can
consider an additional expansion in Q/m. Take the fermion propagator after the
fermion with momentum p is kicked by a photon of momentum q , see Fig. 4.1. If
|p| ∼ |q| = O(Q), then q0 ∼ |q| = O(Q) but p0 =√|p|2 +m2 =m+O(Q2/m).
The propagator can then be written

i

/p + /q −m+ iε =
i(p0γ 0 +m− p · γ + /q)

2p0q0 + q02 − 2p · q− q2 + iε =
i

q0 + iεP+ + · · · , (4.21)

where in the last line I introduced one of the projectors onto positive/negative energy
states,

P± ≡ 1± γ 0

2
, P±P± = P±, P±P∓ = 0. (4.22)

This represents, in a first approximation, a static two-component fermion propagat-
ing forward in time, as can be seen from a Fourier transformation. To capture the
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importance of this limited set of degrees of freedom it is convenient to split the field
into two two-component “heavy fermion” fields [30]

Ψ± ≡ eimtP±ψ, ψ = e−imt (Ψ+ +Ψ−). (4.23)

The effective Lagrangian then employs the relevant degrees of freedom embodied
in Ψ+ instead of the full ψ . It can be obtained [31] by substituting Eq. (4.23) into
Eq. (4.20), integrating over the Ψ− field in the path integral as well as the high-
momentum components of Ψ+ and Aμ, and expanding in powers of 1/m. With an
appropriate redefinition of Aμ to keep its bilinear form unchanged, and rewriting
Ψ+ as a Pauli spinor Ψ (with Ψ ≡ Ψ †), the result is

LNRQED = −1

4
FμνF

μν + β0

m4

(
FμνF

μν
)2 + β1

m4

(
FμνF̃

μν
)2 + · · ·

+Ψ iD0Ψ + 1

2m
ΨD2Ψ + e

2m
(Qψ + κ)Ψ σiΨ F̃ 0i + · · ·

+Lf≥2 (4.24)

where F̃μν = εμναβFαβ/2, σi are the Pauli spin matrices, β0,1 and κ are dimen-
sionless LECs that can be obtained from the parameters appearing in Eq. (4.20),
and Lf≥2 involves four or more fermion fields, as discussed below. As one would
expect, this is simply the most general Lagrangian built out of Ψ+ and Aμ and sub-
jected to the assumed symmetries. Invoking Weinberg’s “theorem” and our experi-
ence that for Q�m the appropriate fermion degree of freedom is a bi-spinor, one
can write this Lagrangian directly, without explicitly performing a path integration.
In this case, the LECs are obtained by the matching of physical amplitudes.

Even though the Lagrangian is more complicated, the structure of the EFT is
much simpler than that of the underlying theory. The absence of Ψ− implies that
there is no explicit pair creation in the EFT, which is an effect of range ∼ 1/(2m)
that is absorbed in the LECs. Fermion lines just go through Feynman diagrams of
the EFT. As a consequence, operators with 2f fermion fields do not contribute to
processes that involve less than f incoming fermions. We can tackle the various
sectors of the theory successively by increasing f , which is particularly important
for the treatment of non-perturbative physics for f ≥ 2. In the relativistic theory the
few-body problem is instead a many-body problem.

The f = 0 sector of Eq. (4.24) is the Euler-Heisenberg Lagrangian, one of the
earliest examples of EFT ideas, which is the basis for studies of low-energy pro-
cesses involving photon fields alone, such as light-by-light scattering. A remarkable
feature of Eq. (4.24) is that it contains photon self-interactions already at tree level.
The most important such interactions have four derivatives and thus by NDA are
expected to be inversely proportional to m−4. The LECs β0,1 originate in fermion-
loop diagrams of the underlying theory and would be O(1) if α were O(1). Since
α� 1, we can match the EFT to the underlying theory in perturbation theory, ob-
taining β0,1 in an expansion in powers of α. The most important diagram has a
single fermion loop with four photon lines attached. Since each vertex is ∝ e and
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the loop typically brings in a (4π)−2, we expect β0,1 = O(α2). Alternatively we
can use Eq. (4.18). The reduced charge is eR = e/(4π) and for c = β0,1/m

4 we
expect cR =m4c/(4π)2 =O(e4

R), from which, again, β0,1 =O(α2). One can sim-
ilarly write and calculate the LECs of higher-derivative terms. They may contain
further powers of α, but are additionally suppressed by at least (Q/m)2 in pro-
cesses with typical external momentum Q. These LECs are of course needed to
ensure renormalizability, Eq. (4.16), in light-by-light scattering at loop level. An ex-
plicit comparison between EFT and QED amplitudes can be found, for example, in
Ref. [32].

In the f = 1 sector, we see that the exponential in Eq. (4.23) removes from the
evolution of the fermion field the relatively large and inert massm, leaving a disper-
sion relation of the non-relativistic, “residual” form p0 = p2/(2m)+· · · . The kinetic
part has a static piece Ψ iD0Ψ , a recoil correction, and, with more derivatives, rel-
ativistic corrections. The strengths of these terms are not arbitrary, but fixed by the
mass. If we neglected the “. . .” in Eq. (4.20) and loop corrections, the same would
be true for the ΨσiΨ F̃ 0i interaction, or “Pauli term”, which represents the interac-
tion of the magnetic dipole moment with a magnetic field. The existence of further
physics and of radiative corrections in the underlying theory leads to an “anoma-
lous” magnetic moment κ , which again would be expected to be of O(1) if α were
O(1). The contributions from loops to κ can be estimated again using Eq. (4.18): for
c = eκ/m, cR =mc/(4π) = O(e3

R) = O(e3/(4π)3), which gives κ = O(α/(4π)),
in agreement with the classic Schwinger result κ = α/(2π)+ · · · for the electron.

The fact that some coefficients are entirely determined bym applies also to terms
contained in the “. . .” of Eq. (4.24), and is merely a consequence of Lorentz in-
variance. Despite its non-relativistic appearance, Eq. (4.24) does respect Lorentz
invariance, but in a Q/m expansion. If we start directly with Eq. (4.24), rather than
integrating degrees of freedom out of a manifestly Lorentz-invariant Lagrangian,
Lorentz invariance can be implemented by demanding “reparametrization invari-
ance” [33], namely that the Lagrangian should be invariant under small changes in
the velocity of the heavy fermion. This method has the advantage of applying also
when the relativistic version of the theory does not have a well-defined expansion
and/or when the explicit integration cannot be performed explicitly. A recent dis-
cussion of the NRQED Lagrangian can be found in Ref. [34].

With the f = 0,1 sectors of the Lagrangian we can study low-energy processes
in which a number of photons scatter from a slow-moving fermion. As we have
seen, for probe energies comparable to the fermion three-momentum, the fermion
is, in a first approximation, static. We are close to the limit m→∞, where the spin
operator does not appear in the Lagrangian (4.24) and there is an SU(2) symme-
try of rotations in spin space. This is an example of an “accidental” symmetry, a
symmetry that emerges at LO in the EFT.

The simplest process is Compton scattering. In the Coulomb gauge A0 = 0, the
most important contribution comes from the “seagull” diagram stemming from the
two A fields contained in ΨD2Ψ ; the corresponding contribution to the amplitude,
∝1/m, is nothing but the spin-independent “Thomson amplitude”. In the underlying
theory, this term arises from the transition to negative-energy states. One can go on
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Fig. 4.2 Diagrams
representing the T matrix for
elastic scattering of two
heavy fermions in NRQED.
A circle at the vertex denotes
an inverse power of the heavy
mass. Other notation as in
Fig. 4.1

and calculate higher-order terms in the combined Q/m and α expansions using the
interactions in Eq. (4.24). For details at a pedagogical level, see Ref. [35].

Let me now turn to the f ≥ 2 sectors, more germane to my goal of tackling
nuclear bound states later. It is here that EFT becomes particularly useful, because
the formulation of the non-perturbative problem is exceedingly complicated in the
underlying theory, where we retain contributions of momentum comparable to the
fermion mass. But, as we have seen, such momenta are also not very relevant for
electromagnetic bound states! Here I will emphasize qualitative aspects of the prob-
lem, omitting for example a discussion of infrared divergences. For a fuller account
in the case of positronium, for example, see Ref. [36].

So I consider the T matrix for the elastic scattering of two of our heavy fermions
in the center-of-mass frame, where both initial and final relative three-momenta
are, respectively, |p| ∼ |p′| = O(Q). I will denote the transferred momentum by
q ≡ p− p′. See Fig. 4.2.

The simplest diagram one can draw represents the exchange of a single photon,
where the photon-fermion interaction comes from the Ψ iD0Ψ term in Eq. (4.24). It
gives

T1γ =
Q2
ψe

2

(p0 − p′0)2 − (p− p′)2 + iε �− Q2
ψe

2

q2 − iε
(
1+O

(
Q2/m2)). (4.25)

The dominant term above, which has magnitude O(4παQ2
ψ/Q

2), is, as we are
going to see shortly, just a fancy way to generate the Coulomb potential. Of
course there are other one-photon-exchange diagrams with derivatives at the ver-
tices, which start at relative order O(Q2/m2) just like the non-static corrections in
Eq. (4.25). An example comes from magnetic interactions at both vertices, which
gives a dipole-dipole interaction of contact form because momenta from the vertices
and propagator cancel out.

In quantum field theory, nothing forbids the exchange of more than one photon.
For example, each fermion can emit a photon which is subsequently absorbed by
the other fermion, forming a one-loop “crossed-box” diagram. According to the
Feynman rules, the corresponding contribution is

T2γ×

=−iQ4
ψe

4
∫

d4l

(2π)4
1

l0 + p0 − (l+ p)2/2m+ iε
1

l0 + p′0 − (l− p′)2/2m+ iε
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× 1

(p0 − p′0 + l0)2 − (p− p′ + l)2 + iε
1

l02 − l2 + iε

=Q4
ψe

4
∫

d3l

(2π)3
1

|l| − p0 + (l+ p)2/2m− iε
1

|l| − p′0 + (l− p′)2/2m− iε
× 1

(p0 − p′0 − |l|)2 − (p− p′ + l)2 + iε
1

2|l| − iε + · · · . (4.26)

Here I integrated over the zeroth component of the loop momentum using con-
tour integration. Closing the contour on the upper plane, we get two contributions
from the poles in the photon propagators, only one of which I show explicitly—
the other, of a similar form, is in the “. . .”. Because the three-momentum scale
is Q, these poles lie typically a distance Q from the origin in the l0 complex
plane. As a consequence, the most important terms in the denominators after the
first integration involve |l| and |q + l|, which, in particular, implies static fermion
propagators as for f = 1. The propagators and integration measure typically con-
tribute, respectively, O(Q−5) and O(Q3/(4π)2) to the final result, which is then
O((Q2

ψα/4π)(4παQ
2
ψ/Q

2)). Just as it could have been expected from experi-
ence with f = 0,1 diagrams, the result is smaller than one-photon exchange by
O(Q2

ψα/4π).
One might further expect that the smallness of α implies that all other diagrams

are small and amenable to perturbation theory. However, if that were true there
would be no electromagnetic bound states. So, how can a bound state arise in a
weakly coupled theory? More generally, what makes the problem non-perturbative?
(Since I am considering explicitly only one type of fermion, there is obviously no
electromagnetic bound state because the Coulomb interaction is repulsive, but still
perturbation theory fails at low energies.)

The reason is apparent already when we consider the other two-photon exchange
diagram, the “box”, in which the photons are exchanged sequentially. In this case
there are subtle differences compared to the crossed-box diagram due to a different
routing of the loop momenta in one of the fermion propagators:

T2γ�

=−iQ4
ψe

4
∫

d4l

(2π)4
1

l0 + p0 − (l+ p)2/2m+ iε
1

−l0 + p0 − (l+ p)2/2m+ iε
× 1

(p0 − p′0 + l0)2 − (p− p′ + l)2 + iε
1

l02 − l2 + iε

=Q4
ψe

4
∫

d3l

(2π)3
1

−2p0 + (l+ p)2/m− iε
1

p0 − (l+ p)2/2m− l2 + iε
× 1

(2p0 − p′0 − (l+ p)2/2m)2 − (p− p′ + l)2 + iε + · · · . (4.27)
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Because of the different signs, closing the contour on the upper half-plane now
involves a third pole, which stems from one of the fermion propagators and lies
only a distance Q2/m from the origin. The contribution from this pole is the one
displayed explicitly above, the other two being relegated to the “. . .”. You should
convince yourself that these other two contributions are similar to Eq. (4.26), and
thus also small by O(Q2

ψα/4π) compared to one-photon exchange. The contri-
bution from the fermion-propagator pole, on the other hand, is larger because the
remaining fermion propagator contains only the difference between small fermion
kinetic energies, and is thus O(Q2/m). We refer to this as an infrared enhancement,
as it becomes more pronounced as Q decreases. Note that the static approximation
is no longer good, although of course relativistic corrections remain small. In the
photon propagators, on the other hand, the kinetic energies can still be neglected
in a first approximation, so that as before each photon denominator is O(Q). What
we have here are simply two sequential Coulomb photon exchanges separated by
the usual non-relativistic two-fermion propagation: it is the iteration of one-photon
exchange. Such a non-relativistic integral over the three-momentum typically con-
tributes O(Q3/(4π)), an extra 4π compared to integrals not originating in the heavy
fermion propagator poles. The size of this term is then O(Q2

ψαm/Q) compared to
one-photon exchange.

This argument can be generalized to diagrams with more photon exchanges, and
even more fermions. It is convenient to introduce “old-fashioned” time-ordered
perturbation-theory diagrams, which represent contributions to amplitudes after
integration over the zeroth-component of loop momenta, as in the last lines in
Eqs. (4.26) and (4.27). In this case vertices are drawn in a specific time order, in-
termediate states are associated with energy differences, and loops represent three-
momentum integrations. The one-photon-exchange Feynman diagram becomes two
time-ordered diagrams depending on which fermion first emits the photon. The
crossed-box Feynman diagram becomes four time-ordered diagrams, all of the same
crossed-box type. The box Feynman diagram becomes six time-ordered diagrams:
two “stretched-box” diagrams where at any time there is a photon “in the air”, rep-
resenting the “. . . ” in Eq. (4.27), and four “true-box” diagrams where there is an in-
termediate state without photons, representing once-iterated one-photon exchange.
In this language, we define “reducible” diagrams as those that contain intermediate
states with fermions only, and are thus infrared enhanced. These intermediate states
contribute O(mQ/(4π)) to the amplitude. The potential is defined as (minus) the
sum of irreducible diagrams.

We expect the potential to have a simple perturbative expansion, which in the case
considered here starts with the one-photon exchange of O(4παQ2

ψ/Q
2). Fourier

transforming Eq. (4.25), we obtain, indeed, the Coulomb potential in coordinate
space. Each extra iteration of this potential adds a factor O(Q2

ψαm/Q), as seen

above. When Q∼Q2
ψαm, all iterations are equally important, and the amplitude is

given by an integral equation, the Lippmann-Schwinger equation—which, in turn,
can be shown to be equivalent to the Schrödinger equation. Schematically the LO
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amplitude is

T (0) ∼ 4παQ2
ψ

Q2

[
1−O

(
Q2
ψαm

Q

)]−1

, (4.28)

which can have a pole atQ∼ |Q2
ψ |αm, corresponding to energies |E| ∼Q4

ψα
2m. If

we were considering two fermions with opposite charge, say Q2
ψ →−1, we would

expect a bound state with binding momentum pat ∼ αm and energy ∼p2
at /m ∼

α2/m—just the back-of-the-envelope estimate given at the beginning of this lec-
ture.

But NRQED gives also a way to systematically go beyond LO. First, it allows
us to calculate corrections to the Coulomb potential, such as the Q/m (∼Q2

ψα in
the bound state) corrections to one-photon exchange and the irreducible two-photon
exchange we discussed above. Second, it tells us that these corrections to the poten-
tial are also corrections in the scattering amplitude, which should be calculated in
perturbation theory on top of the LO (“distorted-wave perturbation theory”).

Note that because each iteration of one-photon exchange scales with a negative
power of Q, the LO amplitude (4.28) satisfies the RG condition (4.16) without in-
voking contact interactions in Lf≥2. However, such four- and more-fermion terms
must exist because they are allowed by the symmetries. And indeed, as the order
increases and the corrections to the potential become more singular (since they have
more powers of momentum or, alternatively, inverse distance), loop diagrams will
bring in new cutoff dependence, which can only be compensated by the LECs. As
for f = 0,1, the LECs with f ≥ 2 can in principle be obtained from a fully pertur-
bative matching calculation in the window m�Q�Q2

ψαm.
The total spin of two fermions can be s = 0,1 depending on the individual spins

being antiparallel or parallel. It is useful to think of the projectors onto spin s,

Ps ≡ 1

4

[
2s + 1+ (2s − 1)σ1 · σ 2

]
, PsPs′ = δss′Ps, (4.29)

where σ i/2 is the spin of fermion i. Because I am considering a single two-state
fermion, the Pauli principle ensures that an S-wave two-fermion contact interaction
can only contribute when the spins are antiparallel. In other words, there is only
one four-fermion interaction without derivatives, corresponding to P0. The many-
fermion Lagrangian has thus the form

Lf≥2 = γ

4m2
(ΨΨΨΨ −Ψ σΨ ·Ψ σΨ )+ · · · , (4.30)

where γ is a LEC. NDA for c = γ /m2 gives, assuming it accounts for photon ex-
change at momenta � m, cR = m2c/(4π)2 = O(e2

R) or γ = O(4πα), suggesting
a relative O(Q2/m2) effect in the two-fermion scattering amplitude. The “. . .” in
Eq. (4.30) include not only more-derivative four-fermion interactions but also six-
and more-fermion interactions, which because of their larger canonical dimensions
are expected to lead to contributions suppressed by powers of Q/m. Again thanks
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to the Pauli principle, for a two-state fermion there are no six- or more-fermion in-
teractions without derivatives, which means three- and more-body forces are very
small.

One can now consider arbitrary processes involving two or more fermions—
in particular, in a bound state—and external low-momentum photons, for example
Bremsstrahlung. NRQED provides the framework to describe atomic and molecular
physics, and indeed state-of-the-art calculations are carried out within this frame-
work (Ref. [37] is but one example). I will now set up an analogous framework for
nuclear physics.

4.2.3 Summary

Nuclear systems involve multiple scales but no obvious small coupling constant.
EFT is a general framework to deal with multi-scale problems using small ratios
of scales as expansion parameters. Applied to low-energy QED, EFT reproduces
some well-known results but also provides a systematic expansion for scattering
amplitudes.

4.3 QCD at Low Energies

For the rest of these lectures I apply the EFT framework to nuclear systems. I start
with the Standard Model (SM) of particle physics at a few GeV and construct the
EFT relevant for momenta O(Mnuc), which should form the basis for a descrip-
tion of typical nuclei. This Chiral EFT has indeed become the starting point for the
rapidly developing “ab initio” methods that harness ever-growing computational
power for the solution of the nuclear dynamics from interactions determined in few-
nucleon systems. However, as we are going to see in some detail, some basic issues
in this EFT, related to the impact of the renormalization of singular potentials on
power counting, are still not fully understood.

4.3.1 Building Blocks

The SM has been repeatedly validated, particularly at scales above a few GeV where
most processes can be studied with relatively little reliance on non-perturbative
physics. The successes of the SM can be understood if it is considered as an EFT
at energies around 100 GeV. It is constructed (in its minimal version) out of quarks,
leptons, gauge bosons and a Higgs boson subjected to an SU(3)c×SU(2)L×U(1)Y
gauge symmetry. All interactions of canonical dimension up to four have now been
established directly or indirectly, and the only allowed dimension-five operator,
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which violates lepton number, is a candidate to explain the small neutrino masses.
Operators of dimension six and higher can cause smaller effects still, for example
baryon-number violation.

As the energy scale is lowered, we can integrate out the Higgs and weak-gauge
bosons, which leaves as only gauge symmetries the SU(3)c of color and the elec-
tromagnetic U(1)em, for which the force carriers are, respectively, eight gluons
Gμ ≡Gaμλa , with λa , a = 1, . . . ,8, the Gell-Mann SU(3) matrices and sum over a
implied, and the photon Aμ. Likewise, we can integrate out the heaviest quarks (top,
bottom, charm). Although not irrelevant for nuclear physics, strange quark effects
are not dominant for ordinary nuclei because, as we are going to see, in a hadronic
theory the quark masses come together with the relatively large scaleMQCD . If the
strange quark is kept explicit in the theory, the relatively heavy strange hadrons pose
significant difficulties to the convergence of the low-energy EFT. In contrast, if the
strange quark is integrated out, as I will do, its effects are suppressed by the strange
hadron masses. The relevant quark fields are then conveniently written as an isospin
doublet,

q =
(
u

d

)
. (4.31)

Here u and d are Dirac spinors for the up and down quarks, taken to be mass eigen-
states with real massesmu = m̄(1−ε) andmd = m̄(1+ε). Matrices in isospin space
can be expressed in terms of the unit matrix, which I will not write explicitly, and
the isospin Pauli matrices τa , a = 1,2,3. Quarks transform under U(1)em according
to the charge matrix

Qq =
(

2/3 0
0 −1/3

)
= 1

6
(1+ 3τ3) (4.32)

and under SU(3)c with a universal strength g, which also governs gluon self-
interactions. If we define the covariant derivatives

Dμq = (∂μ + ieQqAμ − igGμ)q, Gμν = ∂μGν − ∂νGμ + ig[Gμ,Gν],
(4.33)

the most general Lagrangian with Lorentz invariance and these gauge symmetries is
(see, e.g., Ref. [38])

LQCD = −1

4
FμνF

μν − 1

2
Tr
{
GμνG

μν
}+ q̄i/Dq

− m̄ q̄
[

1− ετ3 + 1− ε2

2
θ̄ iγ5

]
q + · · · (4.34)

where θ̄ is the so-called QCD vacuum angle (assumed to be small on phenomeno-
logical grounds) and “. . . ” represent higher-dimensional operators. For simplicity I
have dumped into the “. . . ” also leptonic terms, whose virtual importance in purely
hadronic process is small. They are of course needed when considering processes
with external leptons, which I will not do explicitly in these lectures.
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In order to understand some of the low-energy consequences of the theory based
on the Lagrangian (4.34), I will first neglect the “. . . ”, in which case I am left with
five parameters: g, m̄, ε, e, and θ̄ . I will argue based on a posteriori agreement
with phenomenology that the last four parameters can, in some sense, be considered
small. I will start with the “chiral limit” in which they are all set to zero, and then
consider the changes their non-vanishing values cause. Some of this material (and
original references) can be found in a good advanced textbook, such as Ref. [39].

4.3.1.1 Chiral Limit

In the chiral limit QCD has a single dimensionless parameter, g, and the action is
invariant under scale transformations (x→ λ−1x, q→ λ3/2q , Gμ→ λGμ, Aμ→
λAμ, with λ a real parameter). However, in the path integral obtained from LQCD ,
scale invariance is “anomalously” broken by the inevitable presence of a dimen-
sionful regulator. For renormalization, the strong constant αs ≡ g2/4π “runs” with
the energy scale: it decreases as the energy increases—“asymptotic freedom”—and
conversely increases as the energy decreases, so that αs(1 GeV) ∼ 1. Assuming
“confinement”, that is, that only colorless states (“hadrons”) are asymptotic, and
naturalness, the fact alluded to in the previous lecture that almost all hadrons have
masses O(1 GeV) indicates that QCD has a characteristic scaleMQCD ∼ 1 GeV.

I seek here the EFTs of QCD for momenta Q�MQCD . The first clue comes
from the observation that the three pions—the lightest mesons—form a nearly de-
generate isospin triplet,

−→π =
⎛
⎝ (π+ + π−)/√2
−i(π+ − π−)/√2

π0

⎞
⎠ , (4.35)

of pseudoscalar mesons with an approximate common mass mπ � 140 MeV �
MQCD . Would this be an indication of a breakdown in the naturalness assumption?
No! The smallness and near degeneracy of pion masses can be naturally explained
if we assume the “spontaneous” breaking of “chiral symmetry”.

If I define the projectors

PL,R ≡ 1∓ γ5

2
, PL,RPL,R = PL,R, PL,RPR,L = 0, (4.36)

I can split the quark field into two components

qL,R ≡ PL,Rq, q = qL + qR. (4.37)

In the limit I am considering, the quarks are massless and can have a definite left
(L) or right (R) chirality according to its spin being against or in the direction of the
momentum. Moreover, in this limit the quark kinetic term in LQCD splits into two
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terms, which involve qL and qR separately. Each term is invariant under a separate
SU(2) transformation in isospin space, so LQCD has a global SU(2)L × SU(2)R
chiral symmetry. Since SU(2)L × SU(2)R is the covering group of SO(4), it is
sometimes sufficient to consider the latter, more intuitive group.

However, chiral symmetry is certainly not realized in the low-mass hadronic
spectrum, where the lightest scalar meson and the lowest negative-parity spin-1/2
baryon have masses that are several hundreds of MeV above pions and nucle-
ons, respectively. Still, the spectrum can be qualitatively understood if I assume
that the solution of the path integral has, instead, a smaller, global symmetry of
isospin given by the diagonal subgroup SU(2)L+R , when again it is sometimes eas-
ier to talk instead of SO(3). Goldstone’s theorem tells us that there are massless
(pseudo)scalars in the coset space SO(4)/SO(3). The phenomenon here is com-
pletely analogous to the spontaneous breaking of SO(3) rotational invariance down
to SO(2) that gives rise to spontaneous magnetization and spin waves in a ferromag-
net.

An intuitive picture of this effect comes from considering the effective potential
of QCD in the mesonic sector, as function of the four components of the SO(4)
vector

S =
(−iq̄γ5

−→τ q
q̄q

)
. (4.38)

SO(4) symmetry of the potential means that it is invariant under rotations of S. If
the potential had a minimum at the origin, SO(4) would be manifest in the spectrum.
Non-perturbative physics in QCD must be such as to make the potential have instead
a “Mexican hat” shape: a degenerate set of absolute minima—a four-dimensional
“chiral circle”—a distance away from the origin, which defines the pion decay con-
stant fπ . If we take the “true” minimum to be in the q̄q direction, there are three
massless excitations in the q̄iγ5τaq directions, which we can identify as the pions.
In contrast, in the q̄q direction there is curvature in the potential, which we could ex-
pect to be characterized by MQCD so that the corresponding scalar “sigma” meson
has a mass mσ ∼MQCD .

The massless pions, but not excitations with mass O(MQCD), need to be ac-
counted for explicitly in the EFT, since they give rise to long-distance interactions.
In the limit we are considering, SO(4) is an exact symmetry of the dynamics, so the
EFT Lagrangian has to be invariant under small SO(4) rotations, which are pion-
field translations −→π →−→π +−→ε , with εi three constants. The simplest way to im-
plement the symmetry is to choose pion fields such that all their interactions involve
∂μ
−→π , although, the manifold being a circle, a derivative is always accompanied by

a factor of (1 −−→π 2/4f 2
π + · · · ). Because there are only three pions, SO(4) cannot

be realized linearly, but there is a well-developed technology to incorporate chiral
symmetry in the Lagrangian, the theory of non-linear realizations of symmetries
[39]. Pions and fermion fields transform non-linearly, but covariant derivatives can
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be defined which transform in a simple way:

Dμ
−→π =

(
1−

−→π 2

4f 2
π

+ · · ·
)
∂μ
−→π ,

Dμψ =
(
∂μ + i

2f 2
π

−→
I ψ · −→π ×Dμ−→π

)
ψ,

(4.39)

where
−→
I ψ is the generator of isospin in the representation of the fermion ψ (e.g.−→

I N =−→τ /2 for the nucleon field N ). Similarly one can define covariant derivatives
of the covariant derivatives, and so on. Under the full chiral group these derivatives
transform as under the unbroken isospin subgroup, but with a pion-field-, and thus
position-, dependent parameter. The consequence is that an interaction built of these
covariant ingredients to be isospin symmetric is automatically chiral invariant.

Each chiral-invariant effective interaction will have its LEC. Since the QCD dy-
namics that generate them is non-perturbative, they should contain arbitrary powers
of g. As far as NDA goes, that means reduced couplings with arbitrary dependence
on gR ≡ g/4π . Thus consistency requires that we take gR ∼ 1, and thus a LEC of
a chiral-invariant operator of canonical dimension D involving N fields is expected
to be c = O((4π)N−2/MD−4

QCD). Even though these LECs might not be particularly
small, chiral-invariant interactions become weak at sufficiently low energies because
each derivative brings in a power of momentum Q. And, for interactions with fixed
N , NDA suggests that an extra derivative gives a relative factor Q/MQCD . As we
are going to see, this is a good guide for the perturbative sector of the EFT, but it is
not always true in the nuclear sector where the EFT is non-perturbative.

4.3.1.2 Away from the Chiral Limit

Pions are, however, not massless. Let me take a second step and consider m̄ �= 0 �
MQCD , but still ε = 0, e= 0, and θ̄ = 0. Now there is an explicit breaking of chiral
symmetry in Eq. (4.34), since q̄q is one of the components of the SO(4) vector S in
Eq. (4.38). The Lagrangian is still invariant under the SO(3) isospin subgroup.

In the Mexican-hat picture, the effect of this term is to lower (raise) the poten-
tial in the direction of positive (negative) q̄q , breaking the degeneracy of the now-
deformed chiral circle. We can still talk of a tilted, approximately circular bottom of
the hat, with a slightly different radius fπ � 92 MeV. The distorted potential shape
should not greatly affect the mass of the sigma or any other non-Goldstone state. But
because the bottom is no longer flat, pions acquire a mass, and we speak of them as
pseudo-Goldstone bosons. Note that it is the explicit breaking of chiral symmetry
that justifies our choice of true vacuum in the chiral limit. Spontaneous breaking
of a continuous symmetry only exists in a well-defined limit of the explicitly bro-
ken case. In a ferromagnet, this “vacuum alignment” is manifest in a spontaneous
magnetization in the direction of a previously applied magnetic field.

In the EFT with pions, the Lagrangian no longer has SO(4) invariance; there
are now terms that break chiral symmetry in the q̄q direction, that is, the fourth
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component of S. Such terms do not necessarily contain derivatives but are propor-
tional to powers of m̄—actually m̄R ≡ m̄/MQCD if we invoke NDA. One example
is the pion mass term, for which we expect m2

π = O(MQCDm̄), since from Eq.
(4.18) (m2

π )R ≡ m2
π/M

2
QCD = O(m̄R). This roughly gives an average quark mass

in the ballpark of 10 MeV. Another example is the so-called nucleon sigma term,
the leading change �mN in the nucleon mass away from the chiral limit: by NDA
(�mN)R ≡ �mN/MQCD = O(m̄R), or �mN = O(m̄) = O(m2

π/MQCD). Terms
with higher powers in m̄ come from the fourth components of tensor products of
S. In this way we are able to produce an S matrix with the correct chiral-symmetry
breaking, not restricted to first-order in the breaking parameters. For details of how
to construct these operators, see Refs. [38, 39].

The low-energy effects of the remaining terms in Eq. (4.34) can be analyzed
in similar fashion [38]. When we allow ε �= 0, even the SO(3) group of isospin is
explicitly broken, since the corresponding term in Eq. (4.34) transforms as the third
component of another SO(4) vector,

P =
(
q̄−→τ q
iq̄γ5q

)
. (4.40)

In the EFT Lagrangian, this means there is going to be another class of terms
that break isospin like q̄τ3q , which are proportional to powers of εm̄—in fact
(εm̄)R ≡ εm̄/MQCD according to NDA. An example is the quark-mass contribu-
tion to the neutron-proton mass difference: from NDA, (δmN)R ≡ δmN/MQCD =
O((εm̄)R) or δmN = O(εm̄) = O(εm2

π/MQCD). Among terms of higher order in
the symmetry-breaking parameters one finds a contribution to the pion mass split-
ting, which by NDA is expected to be δm2

π =O((δmN)2).
Allowing for e �= 0 introduces further isospin breaking since the photon couples

differently to up and down quarks. There result two types of interactions in the EFT.
First, “soft” photons interact in the standard NRQED fashion with other low-energy
degrees of freedom: either through U(1) covariant derivatives, with

∂μπa → (δab∂μ + eε3abAμ)πb, ∂μψ→ (∂μ + ieQψAμ)ψ (4.41)

in Eq. (4.39), or through Fμν . In either case, the interactions are proportional to
e. Second, “hard” photons, which are integrated out, give rise to purely hadronic
interactions with strengths proportional to e2

R = α/4π . In this case chiral symmetry
is broken as the 34-component of the SO(4) antisymmetric tensor

Tμ =
(
εabcq̄γμγ5τcq q̄γμτbq

−q̄γμτaq 0

)
. (4.42)

Among the effects from hard photons one finds contributions to both the pion
mass splitting and the neutron-proton mass difference. From NDA, since both
are expected to require at least one photon exchange, for the former δ̄m2

π =
O(αM2

QCD/(4π)) and for the latter δ̄mN =O(δ̄m2
π/MQCD).

In order to isolate the quark mass difference encoded in ε, one should look at
quantities that depend linearly on ε, such as the neutron-proton mass difference.
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It is useful to focus on a discrete subgroup of SO(3), called charge symmetry, of
rotations that interchange up and down quark (up to a sign). Observables that are
charge-symmetry breaking are linear in ε, because the ε term in Eq. (4.34) changes
when up and down quark are interchanged. Electromagnetism also breaks charge
symmetry, so its effects have to be estimated. When this is done, one finds ε ∼ 1/3
[40]. Observables that are isospin but not charge-symmetry breaking—sometimes
called “charge-independence” breaking—are proportional to ε2 at best, so are usu-
ally dominated by electromagnetic effects. NDA suggests that this is the case, for
example, for the pion mass splitting.

In the next step we allow θ̄ �= 0. The corresponding term in Eq. (4.34) now breaks
both parity (P) and time-reversal (T) invariance. To arrive at this term I have fol-
lowed Ref. [41] and performed an anomalous chiral rotation to eliminate a term
of the type Tr{GμνG̃μν} that leads to T violation through non-perturbative effects.
There is an infinite number of rotations that perform this task, but I have selected the
one for which the vacuum is stable. The form in Eq. (4.34) is useful because it shows
that the θ̄ term leads also to chiral-symmetry breaking, as the fourth component of
the same SO(4) vector P that appears in quark-mass isospin violation, Eq. (4.40).
In the EFT, thus, there is a intimate relationship between the strengths of T-violating
and those of T-conserving, charge-symmetry-breaking interactions [38]. Exploiting
this connection and assuming naturalness in Chiral EFT, we can convert the tight
limit on the neutron electric dipole moment [42] to a bound θ̄ � 10−10. Why θ̄ is so
much smaller than 1 is an open naturalness problem in the SM, known as the strong
CP problem. (Assuming CPT is a good symmetry, T violation implies CP violation
and vice-versa.)

Finally, one can go on and construct the low-energy interactions coming from the
higher-dimensional operators in the “. . .” in Eq. (4.34), such as P- [43, 44] (and T-
[45]) violating interactions stemming from dimension-four (and -six) interactions in
the SM.

All the EFT interactions that originate beyond the basic quark-gluon interaction
are proportional to powers of relatively small parameters: m̄/MQCD , εm̄/MQCD ,
e, α/(4π), etc. Thus, these interactions also tend to be weak, so that the full EFT
allows for a controlled expansion of hadronic amplitudes. But obviously I am not
being precise here. We have already seen, for example, how inverse powers ofQ can
compensate for the smallness of α at low energies to give rise to electromagnetic
bound states. We are going to witness a failure of a simple perturbative expansion
in nuclei as well. In both cases, however, an expansion still exists on top of a non-
perturbative LO.

4.3.2 Chiral EFT

I am now in position to formulate Chiral EFT. The goal is to describe nuclear pro-
cesses with typical external momenta Q∼Mnuc�MQCD consistently with QCD.
I start by building the chiral Lagrangian and then discuss at a qualitative level its
implications, as we did for NRQED.
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4.3.2.1 Chiral Lagrangian

At a minimum, we need to include the lightest baryons, the proton and neutron,
which are (at least nearly) stable in the time scale of strong-interaction processes.
Just as in NRQED, we can include only their two non-relativistic components, since
pair creation requires � 2mN ∼MQCD in energy. At Q∼mπ we are probing dis-
tances at which pion-exchange effects can be resolved, so the three pions are also
relevant degrees of freedom. In contrast, all other mesons can be integrated out be-
cause they have masses O(MQCD). If we are interested in going a bit further in
energy, or increase the convergence of the theory at low energies, we should also in-
clude nucleon excitations. The four charge states of the isospin-3/2, spin-3/2 Delta
isobar have approximately equal masses, with m�−mN ∼ 3fπ , which numerically
is about 2mπ . One should thus expect considerable effects from the Delta, which
are best reproduced if the Delta is not integrated out but instead kept explicitly as
a heavy fermion field, from which we remove the same phase as for the nucleon
field. (It is not difficult to generalize the heavy fermion formalism to spin higher
than 1/2.) It is convenient to include also an explicit field for the next excitation,
the Roper, which has the same quantum numbers of the nucleon, even though with
mR − m� ∼ 2fπ we are getting close to MQCD . For simplicity, here I omit the
Roper and other nucleon resonances. My baryon fields are thus

N =
(
p

n

)
, �=

⎛
⎜⎜⎝
�++
�+
�0

�−

⎞
⎟⎟⎠ . (4.43)

In order to couple the nucleon to the Delta, one introduces [10] 2 × 4 spin and
isospin transition operators, respectively S and

−→
T , normalized so that SiS

†
j =

(2δij − iεijkσk)/3 and analogously for
−→
T .

The next step is to write the most general Lagrangian with the same symme-
try structure as QCD: Lorentz, SU(3)c , U(1)em, and approximate, spontaneously
broken SU(2)L × SU(2)R . I will consider explicitly here only the terms shown in
Eq. (4.34) with θ̄ = 0, in which case P and T are also symmetries. This is suffi-
cient for describing the essence of nuclear physics, but of course one can later add
interactions reflecting the neglected terms, which give rise to smaller (but some-
times important!) effects from weak interactions and physics beyond the SM. Color
gauge invariance is trivial because every field is a singlet. Lorentz and electromag-
netic gauge invariance can be implemented in the usual way, as we have done in
NRQED. Chiral symmetry is a bit less familiar, but is implemented as described in
the previous subsection. It is important to notice that in QCD chiral symmetry is
broken in a specific way, which is reproduced in the EFT. In contrast, most hadronic
models do not account for the correct pattern of chiral-symmetry breaking.

Each interaction in the chiral Lagrangian has a LEC, which in principle can be
obtained from a direct calculation of QCD amplitudes at low energies, for example
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using lattice simulations. In fact, since in Chiral EFT the quark masses can be var-
ied independently, EFT amplitudes can be matched to lattice QCD amplitudes at the
somewhat larger quark masses amenable to today’s computers. Chiral EFT provides
an extrapolation tool to smaller quark masses, and can be used to pre- or post-dict
observables at the long distances not accessible directly in lattice QCD. For the time
being, however, one has to resort to fitting LECs to experimental, rather than lattice,
data.

In any case, we need to start with an assumption about the sizes of the LECs,
so as to calculate amplitudes in the EFT before matching them to data. I as-
sume NDA, Eq. (4.18), with M = MQCD , and take fπ = O(MQCD/4π) and
m� −mN as low-energy scales. In addition to an expansion in powers of momenta
and m� − mN , there are separate expansions in the chiral-breaking parameters
m̄/MQCD , εm̄/MQCD , e, α/(4π), etc. How we combine them with the expansion
of chiral-invariant operators is to some extent a matter of choice. The first parame-
ter can be converted into m2

π/M
2
QCD and paired with the momentum expansion for

Q ∼ mπ . The second parameter, now εm2
π/M

2
QCD , depends on the dimensionless

number ε ∼ 1/3. Although one can certainly entertain a counting where ε is taken
as comparable to O(mπ/MQCD), I prefer to err on the side of overestimating rather
than underestimating isospin breaking and count it as O(1). Similar choices affect
the electromagnetic interactions. Since e appears explicitly in covariant derivatives,
it is natural to count it as Q. On the other hand, α/4π is numerically not very far
from εm3

π/M
3
QCD , so having chosen ε = O(1) leaves α/4π as giving suppression

comparable to three powers of the expansion parameter. (Anything less would make
the pion mass splitting appear in LO, clearly too much of overestimate.)

With these choices, it is convenient to write the chiral Lagrangian as

LChEFT =
∞∑
�=0

L (�)
f=0,1 +Lf≥2, (4.44)

where I introduced the “chiral index” [2, 18]

�= d + f − 2 ≥ 0 (4.45)

of an interaction with d derivatives and powers of mπ or m� − mN or e or
(α/4π)1/3, and 2f fermion fields. This index counts inverse powers of the high scale
MQCD—even for hard-photon operators, as long as we count α/4π ∼ εm3

π/M
3
QCD .

It is bounded from below because chiral symmetry guarantees that terms with f = 0
have at least two derivatives or powers ofmπ and thus d = 2, while terms with f = 1
have at least one derivative and thus d = 1:

L (0)
f=0,1 =

1

2
(Dμ

−→π )2 − m
2
π

2
−→π 2

(
1−

−→π 2

4f 2
π

+ · · ·
)
− 1

4
FμνF

μν

+ N̄iD0N + gA

2fπ
N̄−→τ σN · ·D−→π
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+ �̄[
iD0 − (m� −mN)

]
�

+ hA

2fπ
[N̄−→T S�+H.c.] · ·D−→π + · · · (4.46)

where gA and hA are LECs, and “. . .” contain terms with more pion and/or Delta
fields. Increasing the chiral index we find

L (1)
f=0,1 = − δ̄m

2
π

2

(−→π 2 − π2
3

)(
1−

−→π 2

2f 2
π

+ · · ·
)

+ N̄
[

D2

2mN
+�mN

(
1−

−→π 2

4f 2
π

+ · · ·
)

− δmN
2

(
τ3 − 1

2f 2
π

π3
−→π · −→τ + · · ·

)]
N

+ 1

f 2
π

N̄
[
b1(D0

−→π )2 − b2(D
−→π )2 + ib3εijkεabc(Diπa)(Djπb)σkτc

]
N

− gA

4mNfπ
[iN̄−→τ σ ·DN +H.c.] ·D0

−→π

− hA

4mNfπ
[N̄−→T S ·D�+H.c.] ·D0

−→π

+ e

4mN
N̄

{
1+ κ0

+ (1+ κ1)

[
τ3 − 1

2f 2
π

(−→π 2τ3 − π3
−→π · −→τ )+ · · ·

]}
σiNF̃

0i

+ · · · , (4.47)

where κ0,1 and b1,2,3, are new LECs, and so on.
Equations (4.46) and (4.47) are sufficient to illustrate some of the characteristics

of Chiral EFT. First, notice that the electromagnetic interactions are similar to those
in NRQED (4.24) once we account for the isospin of the nucleon. For example,
the anomalous magnetic moment of the proton (neutron) is κp(n) = [κ0 + (−)κ1]/2.
Terms like the β0,1 in Eq. (4.24) appear only at higher orders. Second, the pions
play a role in Chiral EFT similar to the photon in NRQED, in the sense that they are
relativistic bosons that self-interact, dress and can be exchanged among fermions.
Third, the fermions themselves are non-relativistic and therefore the theory can like-
wise be split into sectors of different fermion numbers. But, as stressed before, the
theory is Lorentz invariant, with invariance implemented in a Q/mN expansion, as
revealed by the terms in Eq. (4.47) whose coefficients are determined by the LECs
from Eq. (4.46) and mN .
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4.3.2.2 Chiral Perturbation Theory

Just like NRQED, Chiral EFT is perturbative in the sectors of f = 0,1, where it is
referred to as Chiral Perturbation Theory (ChPT). For a more complete introduction
and references see, for example, Ref. [46].

Let us consider an arbitrary scattering process involving A = 0,1 nucleon and
one or more incoming and outgoing pions and photons, all with external three-
momenta Q = O(Mnuc). In this case, after renormalization all internal three-
momenta in loops can also be taken as comparable toQ. Important for perturbation
theory is the energy difference between an intermediate state and the initial state,
and that is also of O(Q). Using topological identities about Feynman diagrams, one
can show that the amplitude can be put in the schematic form of Eq. (4.14) with [2]

ν = 2−A+ 2L+
∑
i

Vi�i ≥ 2−A≡ νmin, (4.48)

where L is the number of loops, Vi is the number of vertices of type i, which have
chiral index�i , and the sum is over all types of vertices. The lower bound, stemming
from the lower bound on the chiral index (thus ultimately from chiral symmetry)
means that LO consists of all tree diagrams that can be constructed out of L (0),
NLO from tree diagrams with one insertion of a L (1) element, etc. Loops start
contributing at N2LO. The tree results are equivalent to old current algebra, but
ChPT allows a systematic exploration of quantum corrections. One should of course
keep in mind that this power counting is meant as a general guide; for a specific
process at specific kinematics there might be a reorganization of the ordering that
better reflects the relative importance of interactions.

The ChPT expansion in Q/MQCD actually comprises: (i) a non-relativistic ex-
pansion for fermions in Q/mN ; (ii) a multipole expansion of the “heavy” meson
cloud in Q/mσ , . . .; and (iii) a pion-loop expansion in even powers of Q/(4πfπ).
Resumming any of these three expansions would be great, but would not affect the
overall error of a truncation unless the other two expansions can be resummed at the
same time. As noted, since mN is not smaller than the other high scales, it does not
increase the error to include Lorentz invariance only approximately. Conversely, the
error is not decreased in covariant versions of ChPT. Although we are not solving
QCD at short distances, which might well be represented by a very dense cloud of
heavy mesons, we are exploiting the fact that this “inner” cloud is short-ranged at
the resolution scale 1/Q. At this scale the pion cloud is not short-ranged and cannot
be treated in a multipole expansion, but the large factor 4πfπ associated with loops
means that the “outer” pion cloud is sparse, the probability of finding pions “in the
air” decreasing with increasing number.

The f = 0 sector describes interactions of pions and photons. Already at LO
pions self-interact via the kinetic and mass terms in Eq. (4.46), with strengths deter-
mined by fπ and mπ , a classic result due to Weinberg. At relative O(Q2/M2

QCD),
there are further self-interactions with two extra derivatives, analogous to the β0,1
terms in Eq. (4.24), which provide counterterms for the one-loop diagrams at the
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same order. When considering isospin-violating quantities one needs to account for
the pion mass splitting from Eq. (4.47) as well. Nowadays calculations have reached
relative O(Q4/M4

QCD).
In the f = 1 sector, a nucleon interacts with low-energy probes. As the fermion in

the NRQED example, the nucleon is static at LO because, having three-momentum
of O(Q), it has a much smaller recoil energy of O(Q2/mN). The latter is accounted
for at NLO, and relativistic corrections appear two orders higher. The classic process
is pion-nucleon elastic scattering, details of which can be found in Refs. [47, 48]. LO
consists of tree diagrams: an S-wave pion-nucleon seagull (“Weinberg-Tomozawa
term”) from the covariant derivative (4.39) of the nucleon, which is determined by
fπ ; and P -wave interactions via nucleon and Delta “pole diagrams” stemming from
the pion-nucleon and pion-nucleon-Delta couplings of LECs gA and hA, respec-
tively. By NDA, gA,hA = O(1), and indeed gA � 1.3 and hA � 2.9. At NLO we
find not only the Galilean corrections to these couplings but also the effects of new
seagulls. Two are associated with the shifts �mN and δmN in nucleon mass, which
gives the possibility of determining these parameters from scattering. Three other
seagulls have undetermined coefficients b1,2,3 = O(1/MQCD). At N2LO one-loop
diagrams appear, including the leading contribution to the Delta width. At threshold
the P -wave interactions vanish and the scattering length is purely isovector at LO,
the classic Weinberg-Tomozawa result, extended to loop orders in the early 90s [49].
Other reactions can be studied along analogous lines [49].

As long as one considers Q�m� −mN , the � field can be integrated out. The
Lagrangian is formally the same as above, just without this field, but the LECs are
in general different, because they now include Delta contributions. For example,
the coefficients b2,3 are replaced by larger LECs c2,3 = O(1/(m� − mN)). Delta
effects are thus relegated to subleading orders, suppressed by powers of Q/(m� −
mN). However, as the energy increases it is more efficient to keep the Delta in,
and not consider m� − mN as large. If the energy is increased further, into the
Delta resonance region, one finds a “kinematic” cancellation in an s-channel Delta
propagator between energy E and m� − mN , thus enhancing width effects. In a
window |E − (m� −mN)| � O(Q3/M2

QCD), the power counting (4.48) has to be
modified [47, 50]. Delta width effects have to be resummed, allowing us to push
ChPT beyond the Delta region. The Roper then becomes important in some waves
and better be included as well [48].

ChPT has met with much success—for a recent review, see Ref. [51]—which
emboldens us to press on to the sectors of Chiral EFT with A≥ 2 nucleons.

4.3.2.3 Nuclear Physics

As first noted by Weinberg [1], forA≥ 2 we face the same infrared enhancement we
found in NRQED, which more generally takes place for heavy particles exchanging
light quanta. Although the details are different, here this enhancement again leads
to a breakdown of perturbation theory. This is a good thing, given that nuclei and
we would not exist otherwise. . . .
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Fig. 4.3 Diagrams
representing the T matrix for
the elastic scattering of two
nucleons in Chiral EFT.
A nucleon (Delta) is
represented by a (double)
solid line, a pion by a dashed
line. A circle at the vertex
denotes an inverse power of
MQCD

As before, I start with two-body elastic scattering. Two nucleons can exchange
photons as described in NRQED, but here I focus on the strong interactions medi-
ated at long range by pion exchange, see Fig. 4.3. For the momenta, I follow the
same notation as in Sect. 4.2.2.

Analogous to Eq. (4.25), the one-pion exchange (OPE) between two nucleons is

T1π �
(
gA

2fπ

)2 q2

q2 +m2
π − iε

σ 1 · q̂σ 2 · q̂−→τ 1 · −→τ 2
(
1+O

(
Q2/m2

N

))
. (4.49)

Since gA = O(1), for Q ∼ mπ this term has magnitude O(1/f 2
π ) = O(4π/

mNMNN), where, for reasons that will become apparent soon, I introduced the
quantity MNN ≡ 4πf 2

π /mN = O(fπ ). Again as in NRQED, we can, and should
later, consider corrections to OPE from higher derivatives at the vertices, but they
are expected to be suppressed by O(Q2/M2

QCD) or higher.
If we look at the crossed-box two-pion-exchange (TPE) diagrams, we obtain

an expression analogous to Eq. (4.26), but with the more complicated OPE substi-
tuted for photon exchange. We can count powers of Q ∼ mπ and 4π in the same
way, that is, Q3/(4π)2 for the integration and Q−5 for the propagators, plus an
extra Q/fπ for each vertex, to find an overall size O(Q2/(4πf 2

π )
2), or a relative

O(Q2/(4πfπ)2)=O(Q2/M2
QCD) with respect to OPE. The same power counting

applies to the stretched-box diagrams subsumed by the box diagram, and to dia-
grams originating in the Weinberg-Tomozawa seagull shown in Eq. (4.46). Substi-
tuting the Delta for the nucleon in intermediate states only adds modulating factors
of Q/(m� −mN) = O(1) in our counting. Thus, as in NRQED, we can consider
these TPE diagrams as corrections to OPE, here starting at relative O(Q2/M2

QCD).
The true-box diagrams representing iterated OPE, on the other hand, have the

same relative O(4πmN/Q) enhancement as seen in Eq. (4.27): all nucleon ener-
gies are small and nucleon propagators are not static. Recoil, despite appearing only
in L (1)

f=0,1 (4.47), cannot be treated as a perturbation. (This of course has nothing
to do with relativistic corrections, although sometimes one sees a confusion in the
literature, where the need for Galilean corrections is mistaken for a need for rela-
tivistic resummation.) The true-box diagrams have a size O(mNQ/(4πf 4

π )), or a
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relative O(Q/MNN) with respect with OPE. More generally, iterating OPE n times
gives a contribution of relative O(Qn/Mn

NN). Qualitatively the amplitude is like a
geometric series,

T (0) ∼ 4π

mNMNN

[
1−O

(
Q

MNN

)]−1

. (4.50)

Contrary to its NRQED counterpart (4.28), pion interactions are weak at lowQ, but
once Q ∼MNN bound states or resonances can be expected, with energies |E| ∼
M2
NN/mN . Thus, by a reasoning entirely analogous to the one that gives the right

atomic scales, we are led to identify the typical nuclear scale Mnuc with the low-
energy scale MNN =O(fπ ). Chiral-symmetry breaking, in the form of a light pion
with an interaction with strength set by 1/fπ , explains why nuclei are shallow from
a QCD perspective.

In addition to this qualitative insight, we see that in Chiral EFT the first aspect
emerges of the traditional nuclear picture outlined in Sect. 4.2. Like NRQED, Chi-
ral EFT reduces to nucleons interacting through a potential, which we define sim-
ilarly and whose form we can derive. Since by construction we have no infrared
enhancement in the potential, the ChPT power counting (4.48) applies to the corre-
sponding pion-exchange diagrams. At LO, we find OPE. At NLO, or relative order
O(Q/MQCD), there is nothing new because we are assuming P (and T) conser-
vation. At N2LO, we have corrections to OPE (including isospin violation) and
the TPE diagrams discussed above, and at N3LO, TPE diagrams with the seagull
vertices from Eq. (4.46), in addition to isospin-breaking corrections. The isospin-
symmetric potential up to this order was first derived in Refs. [3, 10], and rederived
many times since (see discussion in Ref. [52]). As emphasized in Refs. [53, 54], this
“chiral Van der Waals” potential has the qualitative features of heavier-meson ex-
change potentials, for example sigma+omega exchange in the isoscalar central chan-
nel. In Refs. [55, 56], the famous Nijmegen partial-wave analysis of two-nucleon
(2N ) data was redone with the chiral pion-exchange potential to N3LO without
Deltas as long-range input, instead of heavier-meson exchange. A slightly better fit
laid to rest the longstanding prejudice that lack of explicit heavy meson exchange
was a problem for EFT. At N4LO, in addition to corrections to OPE and TPE, there
is also three-pion exchange; the potential at this order has been derived in a tour de
force in Ref. [57], and references therein. It seems unlikely that anything beyond this
order will be needed. Note that in the literature sometimes relative O(Qn/Mn

QCD),

n≥ 2, is referred to as Nn−1LO instead of NnLO as I do here.
We can go on and examine the implications of power counting for systems with

A≥ 3 nucleons. Eq. (4.48) indeed provides the ordering of pion-exchange diagrams
that generate an f -body force. For example, the leading three-nucleon (3N ) force
comes from tree diagrams with vertices from L (0), and the next-to-leading compo-
nent from tree diagrams with insertion of one vertex from L (1). One can show that
among the leading diagrams only TPE involving the Delta survives a cancellation
against subleading terms in the OPE two-body force [8], resulting in the Fujita-
Miyazawa potential as the dominant 3N force. The next-to-leading TPE diagrams
in turn provide a chiral-corrected version of the Tucson-Melbourne (TM) potential,
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Fig. 4.4 Sample of diagrams
representing the pion-range
components of the
isospin-symmetric part of the
nuclear potential in Chiral
EFT. NnLO stands for
relative O(Qn/Mn

QCD).
(Note that in the literature
sometimes terms with n≥ 2
are referred to as Nn−1LO.)
Notation as in Fig. 4.3

sometimes called the TM’ potential [58, 59]. The leading long-range 4N potential
has been derived as well [60, 61].

However, the relative ordering between potentials involving different numbers
of nucleons is slightly more complicated. In the A-body system the A-body force
connects all bodies while theA−1-body force, for example, leaves one of the bodies
disconnected. Allowing for such disconnected diagrams in the power counting leads
to an extra factor −2C, where C is the number of connected pieces, on the right-
hand side of Eq. (4.48) [2]. We then recover the second aspect of the traditional
nuclear picture: effects of the 2N potential are expected to be larger than those
of the 3N potential, which in turn are expected to be larger than those of the 4N
potential, and so on. The structure of the isospin-symmetric part of the long-range
nuclear potential is shown schematically in Fig. 4.4.

Chiral EFT also provides a justification for the other two aspects of the traditional
picture presented in Sect. 4.2. First, isospin is an accidental symmetry in Chiral EFT
like spin symmetry in NRQED. Thus its violation is not represented by ε but at
best by εQ/MQCD [6]. The most important pieces of the isospin-violating potential
can be obtained from the isospin-breaking terms in Eq. (4.47), and from the higher-
index Lagrangians—see Ref. [62], and references therein. One finds that not only the
isospin-symmetric potential tends to dominate, but also that charge independence
tends to be larger than charge-symmetry breaking [9]. Second, by defining currents
as the sum of diagrams with external probes that are free of infrared enhancement,
we can likewise conclude that effects of one-nucleon currents are expected to be
larger than those of 2N currents, which in turn are expected to be larger than those
of 3N currents, and so on [5].
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I have so far emphasized the long-range contributions from pions, but none of
the qualitative conclusions change as long as we assume that LECs that account for
short-range interactions among two or more nucleons obey NDA. In this case it is
convenient to classify Lf≥2 also according to the index (4.45),

Lf≥2 =
∞∑
�=0

L (�)
f≥2. (4.51)

The lowest-index terms have f = 2 and d = 0. Because of isospin, two nucleons
can be found with total spin s = 0,1 and we can now write two independent no-
derivative interactions, corresponding to the two spin projectors (4.29):

L (0)
f≥2 =−C0(0)

4
(N̄NN̄N − N̄σN · N̄σN)

− C0(1)

4
(3 N̄NN̄N + N̄σN · N̄σN)+ · · · , (4.52)

with two LECs C0(0,1) and “. . . ” standing for terms with Deltas. Using Fierz re-
ordering, other isospin-symmetric forms can be written in terms of these. We can
increase the index by one unit with an extra derivative or two more fermion fields,

L (1)
f≥2 =

D0

fπ
N̄NN̄σ−→τ N · ·D−→π −E0N̄NN̄NN̄N + · · · , (4.53)

where D0 and E0 are new LECs. Again, other forms can be reduced to these. For
example, because of the Pauli principle, three nucleons at the same spacetime point
can only have a total spin s = 1/2, so other six-nucleon operators can be rewritten
in terms of E0. Among the higher-index terms, I will also need

L (2)
f≥2 = −D2(0)

4
m2
π (N̄NN̄N − N̄σN · N̄σN)

(
1−

−→π 2

4f 2
π

+ · · ·
)

− C2(0)

4

(
N̄NN̄D2N − N̄σN · N̄σD2N +H.c.

)

− C
′
2(1)

4

[
3 N̄N(Di N̄)DiN + N̄σN · (Di N̄)σDiN +H.c.

]
+ · · · , (4.54)

where D2(0), C2(0), and C′
2(1) are further LECs. The “. . . ” now involve also other

interactions with only nucleon fields, such as analogous terms for different spin
and/or derivative combinations.

These short-range interactions are, of course, very important in quantita-
tive applications of EFT. With the NDA assumption, we can use the index in
Eq. (4.48) for the full potential, not only the pion-exchange diagrams shown in
Fig. 4.4. The C0(s) terms appear already in the LO 2N potential, since (C0(s))R =
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M2
QCDC0(s)/(4π)2 = O(1), or C0(s) = O((4π)2/M2

QCD) = O(4π/(mNMNN)).

These terms contribute to the two S-wave channels, 1S0 and 3S1 in the nota-
tion 2s+1lj where l and j are the orbital and total angular momenta, respec-
tively. At N2LO further contact interactions with two derivatives or two pow-
ers of the pion mass show up, suppressed by O((Q/MQCD)2). For exam-

ple, since by NDA (C
(′)
2(s))R = M4

QCDC
(′)
2(s)/(4π)

2 = O(1) and (D2(0)m
2
π )R =

M2
QCDD2(0)m

2
π/(4π)

2 = O(m̄R), we have C
(′)
2(s),D2(0) = O(4π/(mNMNN ×

M2
QCD)). These interactions provide (i) pion-mass- and momentum-dependent cor-

rections in the S waves, such as D2(0) and C2(0), respectively; and (ii) short-range
contributions to P waves, such as C′

2(1). The pattern repeats at higher orders. Many
of the corresponding LECs are necessary for the renormalization of the loops in the
potential. The 2N potential then resembles some phenomenological potentials, such
as AV18, where pion exchange is supplemented by a general short-range structure.

Likewise, the D0 and E0 terms come in the subleading 3N potential [8, 63].
While E0 represents a purely short-range 3N effect, D0 gives rise to a mixed-range
force when the pion is attached to a third nucleon. In recent years this chiral 3N
potential has been used in many ab initio nuclear calculations—see, e.g. Ref. [64].
For a review of chiral potentials under the assumption of NDA, including higher
orders, see Ref. [16].

Following Weinberg’s original suggestion [1], most calculations with these
EFT-based potentials treat them in the same way as phenomenological potentials:
once the form of the potential to the desired order has been derived, the appro-
priate dynamical equation—Lippmann-Schwinger, Schrödinger, or their few-body
variants—is solved exactly (within numerical accuracy), and the unknown LECs fit-
ted to data. After a promising start with the N3LO 2N potential with Delta [7, 10],
many years of efforts have now produced N4LO 2N potentials without Delta that
fit 2N data with an accuracy comparable to the best phenomenological potentials
[16]. Adding the 3N force that appears at N3LO gives a reasonable description of
A= 3,4 systems and beyond [64]. Still, remaining issues have led some to wait for a
full N4LO Deltaless potential, while others are rediscovering the Deltaful potential.

A number of processes with external probes have also been considered with Chi-
ral EFT input, under the assumption of NDA for short-range multi-nucleon oper-
ators. They have in some cases led to results similar to earlier phenomenology,
but in other cases they have given distinct, new predictions—such as, for example,
the magnitude of threshold γ d→ π0d [65] and the sign of the charge-symmetry-
breaking asymmetry in np→ dπ0 [66].

But is NDA, inferred in perturbative calculations, valid for the LECs that appear
in the non-perturbative, multi-nucleon sector of the EFT? And does it make sense to
treat high-order corrections in the potential the same way as lowest order, instead of
using perturbation theory as in NRQED? I explain next why NO is the right answer
to both questions.
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4.3.3 Renormalization of Singular Potentials and Power Counting

At the center of any EFT stands the issue of consistency, which of course is much
more important than fitting data. Since EFT’s model independence stems from an as-
sumed integration over all higher-energy physics, its power counting has to yield ap-
proximate RG invariance at each order. In the case at hand, it is not obvious a priori
that solving a dynamical equation with an NDA-based potential produces physical
amplitudes free of cutoff dependence, even if the cutoff dependence of the potential
has been removed. Solving a dynamical equation is just a means of accounting for
reducible diagrams, which contain loops of a different type than those in the po-
tential, but loops nevertheless. Whether such loops lead to cutoff dependence of the
amplitude depends on the high-momentum, or equivalently small-distance, behav-
ior of the potential. The problem is that an EFT-based potential gets more singular
for vanishing radial distance, r→ 0, as the order increases.

Unfortunately, it is now known that a chiral potential based on NDA, as formu-
lated so far, is not consistent with the RG. Despite their accuracy with respect to
data, existing chiral potentials have to be replaced. Chiral potentials are just too
singular, in the sense that they behave at the origin worse than r−2, in both the pion-
exchange and short-range components. In coordinate space, from Eq. (4.49), the LO
OPE between two nucleons is, in spin-singlet and -triplet channels,

V1π,s=0 =
(
gA

2fπ

)2−→τ 1 · −→τ 2

(
δ(r)− m2

π

4πr
e−mπr

)
(4.55)

V1π,s=1 =
(
gA

2fπ

)2−→τ 1 · −→τ 2

[
−1

3

(
δ(r)− m2

π

4πr
e−mπr

)

+ 1

4πr3

(
1+mπr + (mπr)

2

3

)
e−mπr

〈
S12(r̂)

〉]
, (4.56)

where 〈S12(r̂)〉 = 〈(3σ 1 · r̂σ 2 · r̂−σ 1 ·σ 2)〉 is the matrix element of the tensor oper-
ator. The tensor operator mixes waves of l = j±1, where it has one positive and one
negative eigenvalue, except for 3P0 where it is diagonal with a negative eigenvalue.
It also acts on states with l = j , where it has a positive eigenvalue. Considering
the matrix elements of the isospin operator, the Yukawa part of V1π is attractive in
isovector (isoscalar) channels for s = 0 (s = 1). The tensor part of V1π,s=1 is attrac-
tive in some uncoupled waves like 3P0 and 3D2, and in one of the eigenchannels
of each coupled wave. OPE is thus much more singular (and complicated!) than the
Coulomb potential α/r in NRQED. At LO there are minimally also the (singular)
C0(s) delta functions from Eq. (4.52), which can be combined with the delta func-
tions in Eqs. (4.55) and (4.56). And the potential is more singular still at higher
orders.

It has been known for a long time that attractive singular potentials require addi-
tional short-range parameters, and EFT provides just the tools, via renormalization,
to make the solution of the Schrödinger equation well defined. The conclusion about
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the bad RG behavior of NDA-based potentials is of course independent of the regu-
larization procedure, so for illustration I will consider an intuitive regularization in
coordinate space via a cutoff radius R ≡ 1/Λ. The long-range potential is unmodi-
fied for r > R, but for r < R it is set to zero and a square well (and its derivatives) is
taken instead. This short-range potential is a regularization of delta functions (and
derivatives). Renormalization means that at each order the parameter(s) of the short-
range potential can be found as functions of R in such a way as to keep low-energy
observablesR-independent, at least when R is much smaller than the distance scales
of the long-range potential.

Since the complicated spin-isospin structure is not particularly relevant for renor-
malization, let me for simplicity consider a single uncoupled wave with a central
potential

V (r)=− α(R)
2μR2

θ

(
1− r

R

)
− λ

2μr2
0

f (r/r0)

(r/r0)n
, (4.57)

where r0 is a characteristic distance in the modulating regular function f (r/r0) such
that f (0)= 1, λ is a dimensionless strength, n is an integer, and the dimensionless
α(R) is a function of R. For the nuclear case with OPE, μ = mN/2, r0 = 1/mπ ,
and |λ| ∼mπ/MNN . In s = 0 channels, n= 1 and f (x)= exp(−x), while in s = 1
channels, n= 3 and f (x) is slightly more complicated.

In order to solve this problem, one matches at r = R the log-derivative of the
solutions of the Schrödinger equation for the two regions r < R and r > R. Let me
focus first on l = 0, where at zero energy one obtains

√
α(R) cot

√
α(R)= Fn(λ, r0,R), (4.58)

with Fn(λ, r0,R) a complicated function obtained from the outside wavefunction.
The issue is whether an α(R) can be found when R� r0 such that the low-energy
T matrix satisfies Eq. (4.16).

The case n= 1 might seem innocuous, as in this case the long-range part of the
potential is not singular. Yet, the delta function is, and we find the first surprise here.
In this case the potential is Coulombic for R < r� r0, so the external wavefunction
is given by a combination of regular and irregular Bessel functions. One finds [67]

F1(λ, r0,R)=−λR
r0

log

(
R

R�

)[
1+O(R/r0)

]
, (4.59)

where R� is a constant that determines the appropriate combination of external so-
lutions for a given low-energy datum. The desired α(R) is

α(R)=
(
k + 1

2

)2

π2 + 2λ
R

r0
log

(
R

R�

)
+O

(
R2/r2

0

)
, (4.60)

where k is an integer. One can then show that the amplitude at low (not necessarily
zero) energies approaches cutoff independent results.
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This is quite satisfactory, except for the fact that α(R) has to have a piece linear in
λ/r0 ∼m2

π/MNN . The interaction that it represents in the Chiral EFT Lagrangian is
the chiral-symmetry breaking term with LEC D2(0) in Eq. (4.54). As it is obvious,
this interaction is not the same as the C0(s) terms in Eq. (4.52): they give rise to
different pionic interactions. By NDAD2(0) was supposed to be N2LO. Yet, we have
just found that it is necessary at LO, if we take OPE as LO! Thus the magnitude
of D2(0) is determined not by the high-energy scale MQCD but instead by pion
scales, and must beD2(0) =O(4π/(mNM3

NN)) instead. Note that this problem does
not appear for l > 0, where one expects no delta function in LO, only the regular
Yukawa potential.

Although this failure of NDA is of no particular consequence for the 2N problem
itself, where only the combination C0(0) + D2(0)m

2
π is measured, it should affect

other processes like pion-nucleus scattering. Even more significantly, if NDA fails
for this operator due to the non-perturbative nature of pion exchange, other operators
might well suffer from the same problem. This was first pointed out in Ref. [68] and
traced to the diagram where OPE is sandwiched between two contact interactions.
The same authors [69] also noticed that thrice-iterated pion diagrams lead to cutoff
dependence, but with two powers of momenta instead of two powers of the pion
mass. Since in the NDA-based power counting two-derivative delta functions appear
only at N2LO, just like D2(0), this suggests impending disaster—it could imply
the need for infinite counterterms once the whole pion ladder is considered. These
authors then proposed [69] that pions be treated in perturbation theory, that is, as an
expansion in |λ| ∼mπ/MNN . If this is done, LO contains only contact interactions
C0(s), while OPE appears first as a single insertion at NLO together with D2(0)
and the two-derivative S-wave contacts with LECs C2(s). More generally, a power
counting can be devised that is consistent with the RG. (This power counting is,
apart from the presence of pions, the same as the one for the Pionless EFT in the
next lecture.) In s = 0 channels it seems this expansion does converge, although in
1S0 only very slowly [67]. Unfortunately, for s = 1, where the tensor force can be
attractive, the expansion fails already at Q∼ fπ [70].

I am thus back to trying to make sense of the renormalization of non-perturbative
OPE in s = 1 channels, where n= 3. When the potential is repulsive, one can solve
the Schrödinger equation in the standard manner without any subtleties. For the
interesting case λ > 0, on the other hand, the two outside solutions vanish as r→ 0
but oscillate indefinitely on the way there. There is no way to discard one; instead,
we have again a combination of Bessel functions leading for n≥ 2 to [71]

Fn(λ, r0,R) = n

4
−

√
λ

(R/r0)n/2−1
tan

( √
λ

(n/2− 1)(R/r0)n/2−1
+ φn

)

× [
1+O

(
(R/r0)

n/2−1,R/r0
)]
, (4.61)

where φn is fixed by a given datum (the scattering length for n > 3). The corre-
sponding α(R), found numerically, has a limit-cycle-like behavior: as R decreases,
it decreases from +∞ to −∞ to start again in shorter and shorter cycles. Again,
one finds that the scattering amplitude at finite energy is well behaved. We thus can
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renormalize the l = 0 wave for a singular potential of this type with a single coun-
terterm, despite the wild cutoff dependence of the diagrams in the corresponding
perturbative series.

This bodes well for the LO chiral potential. Indeed, for n= 3 α(R) depends on
λr0 ∼ 1/MNN , which is independent of mπ and thus represents a chiral-invariant
counterterm like C0(1). One can show [67] that the coupled character of the 3S1-3D1
channels does not affect this conclusion. The NDA-based power counting seems to
work in this case. Or does it?

In the final twist of this saga, hell breaks loose. What about channels with l > 0
where the singular potential is attractive? In these channels there is a repulsive cen-
trifugal barrier l(l + 1)/r2, which dominates over the −λr0/r3 potential at large
distances. The situation gets reversed at short distances, where −λr0/r3 again de-
termines the wavefunction. Although the details of the matching change, one con-
cludes that in each of these waves we need a new short-range parameter fixed by a
low-energy datum. Clearly the NDA-based power counting does not provide any of
these LECs at LO. If we insist in varying the cutoff in these waves, as we should, the
phase shifts can be anything we want [72]. The simplest example is the 3P0 wave
where a bound state crosses threshold for a cutoff ∼1 GeV. The only way to fix [72]
this problem is to take as LO an interaction like the C′

2(1) term in Eq. (4.54), which

if NDA were correct would only appear at N2LO. Just like D2(0), we must have
instead an enhancement, C′

2(1) =O(4π/(mNM3
NN)). The situation is similar in the

coupled 3P2–3F2 channels.
How many more LO interactions do we need? A simple estimate comes from

the distance where the effective potential −λr0/r3 + l(l + 1)/r2 is maximum,
rm = 3λr0/(2l(l + 1)). When rm � 1/MQCD the singular attractive potential is
unimportant at large distances. The wavefunction oscillates only outside the region
in which one expects the EFT to be valid. At the distances relevant to the EFT,
the relatively smooth behavior of the wavefunction can be captured in perturbation
theory. When one plugs in numbers, one finds that for l � 2 pions are likely per-
turbative. This simple argument is corroborated by a more detailed calculation [73].
Thus, it seems that the correct LO consists of non-perturbative pions in S and P
(and maybeD?) waves, with short-range interactions in the S and OPE-attractive P
(and maybe D?) waves [72].

With the LO thus established, what about higher orders? It has been shown [74],
in the context of a toy model, that as long as they are treated perturbatively (as
in NRQED), the corrections in the amplitude can be renormalized with the short-
range interactions given by a corrected NDA. In this corrected NDA, for a relative
(Q/MQCD)

n correction in the long-range potential, one includes short-range op-
erators with n derivatives more than those appearing in LO. In other words, NDA
applies once, but only once, we get to the perturbative corrections. For similar, but
not identical, conclusions about the correct power counting from an RG-equation
perspective, see Ref. [75].

A frequently asked question is, if the corrections are small enough to be perturba-
tive, why can we not just treat them non-perturbatively, as done in existing versions
of chiral potentials? The reason is simple: lack of counterterms. Take for example
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a two-derivative contact interaction that appears in one insertion at N2LO. In the
same channel, two insertions will be in N4LO, giving a highly singular contribution
to the T matrix. This is however no problem as there will be at the same order an
equally singular four-derivative contact interaction, which will provide the neces-
sary counterterm. Only the sum of all N4LO terms is cutoff independent and small.
If I truncate at N2LO (one needs to truncate somewhere. . . ) but decide to iterate
both LO and N2LO, I automatically include diagrams with two (and many more!)
insertions of the N2LO operator without the required four-derivative counterterm.
In general, my result will now be cutoff dependent, and there are likely regions of
cutoff space where the “corrections” are no longer small. Not surprisingly, varia-
tions of the cutoff for truncations at N3LO and N4LO in Weinberg’s scheme have
been shown to lead to wild variation in the phase shifts [76, 77]. Existing chiral po-
tentials can only fit data accurately in small windows in cutoff space. Note that not
everybody thinks lack of RG invariance is important in this context [78].

The first calculations of the 2N system based on these new power-counting ideas
give encouraging results [79–83], as one might have expected from the existence of
more counterterms at each order than in NDA-based potentials. We can be optimistic
about the development of a chiral potential that not only fits data well, but is also
consistent with the RG. However, much remains to do to gauge the impact of these
discoveries in systems with more nucleons and external probes.

4.3.4 Summary

A low-energy EFT of QCD has been constructed and used as input to ab initio
methods to describe nuclear systems. Chiral symmetry plays an important role, in
particular setting the scale for nuclear bound states. Several aspects of the traditional
picture of nuclear physics emerge from the chiral potential, which additionally pro-
vides consistent few-body forces and currents, and systematic treatment of loop
and isospin-breaking corrections. Unfortunately, though, the simplest power count-
ing, based on naive dimensional analysis, is inconsistent with the renormalization
group. A new, consistent power counting has been formulated, but is still mostly
virgin territory.

4.4 Loosely Bound Systems

Chiral EFT provides a foundation for the physics of nuclei, at least whenA is not too
large. However, some nuclei are loosely bound in the natural binding energy scale
of O(M2

nuc/MQCD). The dynamics of these nuclei mostly takes place at distances
large compared to 1/Mnuc. We might expect new degrees of freedom and structures
to emerge and, indeed, many loosely bound states display clusterization and other
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phenomena like Borromean-type binding, where a system is bound even if its sub-
systems are not. In addition, loosely bound nuclei are important in an astrophysics
context, sometimes at energies too low to achieve in the lab.

The relatively large distance scale means that fewer of the features of QCD, such
as chiral symmetry, leave an imprint on the physics. On the upside, these systems
share similarities with other loosely bound systems, where the underlying dynamics
might be dominated by other EFTs than QCD, for example atomic systems where
the underlying theory is NRQED. This universality is the overarching theme of this
last lecture, where I first discuss how a low-momentum scale might arise, and then
how two EFTs—Pionless and Halo/Cluster—describe nuclei at this scale.

4.4.1 Fine-Tuning

It has long been remarked that the deuteron is relatively large. From the deuteron
binding energy Bd � 2.2 MeV, an estimate for the deuteron binding momentum
is ℵ1 ∼ √

mNBd ∼ 45 MeV, smaller than mπ by a factor of about 3. This means
that the two nucleons are effectively at a distance three times larger than the range
of the force, which prompted very early attempts by Bethe and Peierls, and others
to describe deuteron physics with only schematic short-range potentials, such as a
square well. The situation is even more dramatic for the 1S0 virtual state, a structure
in the T matrix to which we can associate a negative energy −Bd∗ � −0.07 MeV
and thus a momentum ℵ0 ∼√

mNBd∗ ∼ 8 MeV, almost 20 times smaller than the
pion mass.

For a generic short-range potential of range R, the two-body amplitude in the S
wave can be written for kR� 1 in the form of the effective range expansion (ERE),

T0(k)= 2π

μ

[
− 1

a2
+ r2

2
k2 + · · · − ik

]−1

, (4.62)

with a2 and r2 the scattering length and effective range parameter, and higher ERE
terms not shown explicitly. If the effective range has a natural size r2 ∼ R, and the
same is true of other ERE parameters, a shallow bound state of binding momentum
k = iκ , κ ∼ 1/a2, is possible if |a2| � R. This is the case of the 2N system, given
that the effective ranges and other ERE parameters have natural sizes, for example
r2(1) � 1.75 fm and r2(0) � 2.8 fm, but a2(1) � 5.4 fm and a2(0) ≈ 20 fm in the 3S1
and 1S0 channels, respectively, are much larger than 1/mπ . Thus we are close to the
unitarity limit defined by a2 →∞ with other ERE parameters vanishing.

This situation suggests that the parameters of QCD are fine-tuned. Take as a very
simple example a square well in the notation of Eq. (4.57), with λ= 0 and R not a
cutoff but the physical scale associated with the range of the force. In that case one
can find an analytic formula for the S-wave T matrix,

T0(k)= i
[

1− e−2ikR

√
α + (kR)2 cot

√
α + (kR)2 + ikR√

α + (kR)2 cot
√
α + (kR)2 − ikR

]
, (4.63)
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which takes the form (4.62) for kR� 1, with

a2 =R
(

1− tan
√
α√
α

)
, r2 =R

(
1− R

αa2
− R2

3a2
2

)
, . . . (4.64)

For generic α = O(1), |a2| ∼ |r2| ∼ R. However, if we dial α close to the criti-
cal value αc ≡ [(2n+ 1)π/2]2 with n an integer, that is, if |1 −√

α/αc| � 1, then
R/|a2| = αc|1−√

α/αc|+· · · � 1, without changing the size of other ERE parame-
ters significantly. By this fine-tuning a low momentum scale ℵ≡ |1−√

α/αc|/R�
1/R appears in the system. Since there is a zero-energy pole in (4.63) at α = αc , the
fine-tuning means a shallow real or virtual bound state. For a real one, the wavefunc-
tion is normalizable, ψ ∝ exp(−r/a2)/r , indicating a large size. This type of object
is intrinsically quantum mechanical, since in classical physics bound-state sizes are
limited by the range of the potential.

The details are different in the nuclear case where the LO potential consists of
OPE plus contact interactions, instead of a simple square well. Still, at the phys-
ical pion mass the potential parameters must conspire to give the observed large
scattering lengths. Now, all chiral-symmetric parameters are tied together by the
non-perturbative QCD dynamics determined by the strong-coupling g. But the (cur-
rent) quark masses, and thus the pion masses, can be considered largely independent
of g in the SM. Therefore we can ask the question whether the fine-tuning can be
undone by a variation in mπ . In Ref. [67] it was argued, based on a incomplete
N2LO analysis, that this might just be the case: the deuteron and virtual state can
go unbound or bound with small variations of mπ . With some reasonable assump-
tions, the deuteron was found to have a more natural binding energy ∼ 10 MeV in
the chiral limit, and to become unbound at mπ,c � 200 MeV, where the scattering
length diverges. This analysis was later refined and compared with emerging full
lattice QCD data, as described in Ref. [84]. Currently there is feverish activity in
lattice QCD to calculate the binding energies in the 2N system (and other light nu-
clei) at various values of mπ (see Ref. [85] and references therein). Although there
is no consensus yet, it seems that mπ,c might actually be just below the physical
pion mass. Either way, if this picture stands the test of lattice QCD, one can see the
fine-tuning scale as ℵ≡ |1−mπ/mπ,c|Mnuc�Mnuc . The curve a2(mπ) [67] is in
fact very similar to a2(B), where B is an external magnetic field, for atoms near a
Feshbach resonance. Therefore it could very well be that we can think of QCD as
near a Feshbach resonance in the quark masses.

There is no good explanation for this fine-tuning, yet. But we can exploit it by
devising simpler EFTs that are valid only for momenta smaller than Mnuc, where
even pion physics can be considered short-ranged.

4.4.2 Contact EFT

For Q∼ ℵ�Mnuc (with ℵ some average of ℵ0,1), pions (and Deltas) can be inte-
grated out: in few-nucleon systems, only nucleons are relevant degrees of freedom.
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Chiral symmetry is badly broken and of no use. The most general Lagrangian with
Lorentz and electromagnetic gauge invariance (and P and T symmetries) is a sim-
plified version of what we had in the previous lecture:

Lpiless = N̄
(
iD0 + D2

2mN
− δmN

2
τ3

)
N − 1

4
FμνF

μν

+ e

4mN
N̄
[
1+ κ0 + (1+ κ1)τ3

]
σiNF̃

0i + · · ·
+Lf≥2 (4.65)

in the same notation as before. In the f = 0,1 sectors the theory reduces to NRQED,
so I will focus on f ≥ 2,

Lf≥2 = −C0(0)

4
(N̄NN̄N − N̄σN · N̄σN)− C0(1)

4
(3 N̄NN̄N + N̄σN · N̄σN)

− δC0(0)

4

(
N̄

1+ τ3
2

NN̄
1+ τ3

2
N − N̄σ

1+ τ3
2

N · N̄σ
1+ τ3

2
N

)

−E0N̄NN̄NN̄N

− C2(0)

4

(
N̄NN̄D2N − N̄σN · N̄σD2N +H.c.

)+ · · · , (4.66)

where only some representative interactions are shown, which include an isospin-
breaking contact for protons with LEC δC0(0). Although I am repeating symbols for
some the LECs, it should be kept in mind that they are not the same as in the Chiral
EFT of the previous lecture: here they implicitly include pion physics that in Chiral
EFT is kept explicit.

It has sometimes been found convenient to reformulate [86] the theory in terms
not only of nucleons but also “dibaryon” (or, for atoms, “dimeron”) auxiliary fields−→
S and T with the quantum numbers of the two S-wave 2N channels, that is, spin

(isospin) 0 (1) and 1 (0), respectively. In this case the Lagrangian (4.66) can be
rewritten [87] as

Lf≥2 = −�0
−→
S ·

(
1+ δ�0

�0

1+ τ3
2

)−→
S − g0√

2
[−→S · −→P 0NN +H.c.]

−�1T ·T− g1√
2
[T · P1NN +H.c.]

+ hN̄
{
g2

0
−→
S · −→τ −→S · −→τ + g0g1

3
[T · σ−→S · −→τ +H.c.]

+ g2
1N̄T · σT · σ

}
N + σ0

−̄→
S ·

(
iD0 + D2

4mN

)−→
S

+ σ1T̄ ·
(
iD0 + D2

4mN

)
T+ · · · (4.67)
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where
−→
P 0 = σ2

−→τ τ2/
√

2 and P1 = τ2σσ2/
√

2 are the projectors onto the S-wave
2N channels of spins s = 0,1, �0,1, δ�0, g0,1, and h are LECs—which can be
thought of as the residual masses and mass splitting of the dibaryons, their couplings
to two nucleons, and a dibaryon-nucleon interaction— and σ0,1 = ±1. Integrating
out these auxiliary fields we regain Eq. (4.66) with certain relations between the
LECs.

We can define the potential as before, so that amplitudes consist simply of iter-
ations of the potential. But here the potential takes the particularly simple form of
a sum of delta functions and their derivatives or, alternatively, of dibaryon propaga-
tion in the s channel. Either way, the potential contains no loops. All there is to do
is to understand the ordering of the various terms, calculate the loops that appear in
the iteration of the potential, and make sure observables are RG invariant.

4.4.2.1 The Two-Nucleon System

For a system with |a2| � |r2| ∼ R, two-body physics at momenta Q∼ ℵ ≡ 1/|a2|
can be described in a simple expansion in R/|a2| � 1. Since effective range and
other ERE terms should have natural size, in a first approximation only the non-
derivative contact interactions should contribute [88].

The two-body amplitude in LO is particularly simple, being a sequence of po-
tential insertions separated by box-like loops as in Eq. (4.27), where instead of
Coulomb interactions we have a contact interaction—see Fig. 4.5. The two sim-
plest diagrams are the single and once-iterated contact interaction, in each S-wave
channel, respectively,

T1c =−C0(s) (4.68)

and

T2c = −iC2
0(s)

∫
d4l

(2π)4
1

l0 + p0 − (l+ p)2/2mN + iε
× 1

−l0 + p0 − (l+ p)2/2mN + iε

= mNC2
0(s)

∫
d3l

(2π)3
1

l2 − 2mNp0 − iε
= mN

4π
C2

0(s)

[
γ1Λ+ ik +O

(
k2/Λ

)]
, (4.69)

where γ1 is a constant that depends on the exact regulator used to make the loop inte-
gral well-defined (γ1 = 2/π for a sharp momentum cutoff, for example). The poten-
tially dangerous dependence on a positive power of Λ can be absorbed in C0(s)(Λ)

itself, while the 1/Λ terms can be taken care of by higher-derivative contacts. As
in any (properly renormalized) EFT, the meaningful contribution of the loop is the
term that is non-analytic in the energy 2p0 = k2/mN . We can see explicitly that an
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Fig. 4.5 Diagrams representing the T matrix for the elastic scattering of two nucleons in Pionless
EFT. A nucleon is represented by a solid line. A circle at the vertex denotes an inverse power of
Mnuc

intermediate state does indeed contribute O(mNQ/(4π)) to the amplitude as argued
before. Each iteration therefore brings in a factor of O(mNQC0(s)/(4π)).

If C0(s) ≡ 4π/(mNℵs), then the LO two-body amplitude needs to be resummed
for Q∼ℵs , as we have done schematically before in Eqs. (4.28) and (4.50):

T (0) ∼ 4π

mNℵs
[

1−O

(
Q

ℵs
)]−1

. (4.70)

But here we can be more explicit because, contrary to the earlier cases, the series is
an exact geometric series:

T (0) = 4π

mN

[
−
(

4π

mNC0(s)
+ γ1Λ

)
− ik

]−1[
1+O

(
k

Λ

)]
. (4.71)

Comparison with Eq. (4.62) shows that we recover the ERE in LO, with the
cutoff-independent combination CR0(s) ≡ C0(s)(Λ)/(1 + mNγ1ΛC0(s)(Λ)/4π) =
4πa2(s)/mN capturing the physics of the large scattering length. The amplitude has
a pole at imaginary momentum k = iκs = i/a2(s), which represents a real (virtual)
bound state for a2(s) > 0 (<0) with binding energy B2(s) = 1/(mNa2

2(s)).
Thus the fine-tuning that generates a shallow S-wave bound state can be ac-

counted for if C0(s) depends on the anomalously low scale ℵs . We can consider
corrections that account for natural ERE parameters if the LECs of derivative oper-
ators scale with ℵs and Mnuc in a particular way. The ℵs enhancement depends on
whether the LEC contributes to the S-wave. For example, C2(s) ∼ 4π/(mNMnucℵ2

s )

gives rise to a relative correction O(Q2/(Mnucℵ)) in Eq. (4.71), which incorporates
physics of an effective range r2 ∼ 1/Mnuc. Similar scalings apply to higher S-wave
parameters, but not in other waves, where no shallow bound states exist. Thus, for
example, C′

2(s) ∼ 4π/(mNM3
nuc) gives the leading P -wave contribution to the am-

plitude at relative O(Q3/M3
nuc). Higher waves appear at even higher orders. For

more details, see Refs. [69, 89].
Note that, as in NRQED and Chiral EFT, the corrections in Eq. (4.71) should

in principle be treated in distorted-wave perturbation theory, when RG invariance
can be maintained. In the particular case of the dominant correction, C2(s), at NLO
we consider just one insertion of its vertex, and any number of C2(0) vertices. At
N2LO we need two insertions, with one from the four-derivative interaction with
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Fig. 4.6 Diagrams representing the reduced T̃ matrix for the elastic scattering of two nucleons in
Pionless EFT. A nucleon is represented by a solid line, a dibaryon by a double solid line

LEC C4(0). Actually, the contributions from C2(s) can be resummed to the form
(4.62) without destroying RG invariance, but only as long as r2(s) ≤ 0 [90], a form
of the so-called Wigner bound. Since r2(s) > 0 in the 2N case, one should indeed
refrain from deviating from perturbation theory.

There is not much difficulty in adding Coulomb effects. As we have seen in
NRQED, Coulomb becomes non-perturbative for Q� αmN ∼ 5 MeV. This is not
too far from the 1S0 virtual bound state, that is, Coulomb effects O(4πα/Q2) be-
come comparable to C0(0) = 4π/mNℵ0 for Q2 � αmNℵ0 ∼ ℵ2

0. In the two-proton
system, for such low momentum one needs to account for Coulomb in addition to
a contact interaction at LO, which introduces new cutoff dependence. We therefore
need to consider the additional contact interaction δC0(0), which is isospin breaking,
to absorb this cutoff effect [91]. Since δC0(0) needs to be fitted to the pp scattering
length, isospin breaking cannot be predicted at this order. Fortunately, at higher ener-
gies Coulomb and other electromagnetic interactions can be treated in perturbation
theory.

We can recast these statements in the dibaryon formulation, where the dibaryon
residual masses are taken to be fine-tuned, �0,1 ∼ ℵ0,1, while the coupling con-
stants are taken as natural-sized, for example g2

0,1 ∼ 4π/mN . The dibaryons can be
thought of as “bare” real and virtual bound-state fields, although this implies noth-
ing about their composite nature. The S-wave 2N amplitudes are just the couplings
of two nucleons to dibaryon propagators that are “dressed” by 2N loops. In LO
only the dibaryon residual mass is needed in addition to the two-nucleon/dibaryon
coupling. For the strong-interacting sector we can write

T = g2
s T̃ , (4.72)

with the reduced T matrix T̃ being the sum of successive bare dibaryon propagators
depicted in Fig. 4.6,

T̃1d + T̃2d + · · · = 4π

mNg2
s

[(
4π�s
mNg2

s

− γ1Λ

)
− ik

]−1

×
[

1+O

(
k

Λ

)]
, (4.73)

from which we see that renormalizability is achieved by absorbing the Λ depen-
dence in �s/g2

s . Coulomb can be included just like above, requiring a renormal-
ization of δ�0. Dibaryon kinetic terms generate effective ranges at NLO, but these
kinetic terms have signs σ0,1 given by the sign of −r2(0,1). Since r2(s) > 0, σs < 0
and the bare dibaryons are ghosts. However, their character changes when they get
dressed, and the 2N amplitude has no pathology.
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Fig. 4.7 The 1S0 (left) and 3S1 (right) 2N phase shifts (in degrees) as functions of the center-of–
mass momentum (in MeV). The dot-dashed lines represent the Nijmegen phase-shift analysis [94].
Left: the dashed, dotted, and thick solid lines show the Pionless EFT results at LO, N2LO, and
N4LO, respectively, while the thin solid line shows the ERE. Right: the dashed, dotted, and thick
solid lines show the Pionless EFT results at LO, NLO, and N2LO, respectively. From Refs. [12, 92],
courtesy of M. Savage

This approach, in either formulation, has been shown to give a very clear path
to analyze low-energy reactions involving two nucleons systematically [13]. It is a
field-theoretical generalization of the ERE. The resulting 2N phase shifts converge
to empirical values for Q �Mnuc, as shown for the S waves in Fig. 4.7 [12, 92].
Deuteron properties come out well; for example the deuteron binding energy is
found to be Bd = 1.9 MeV in NLO, to be compared with the experimental value
of 2.2 MeV. More generally, this EFT can be applied to any system with |a2| � |r2|,
for example bosonic or fermionic atoms near a Feshbach resonance [93].

4.4.2.2 The Three-Nucleon System

The 3N system proves to be much more interesting, since here the EFT is not just
the ERE. There is no symmetry to forbid three-body forces like the E0 term in Eq.
(4.66) or the h term in Eq. (4.67). As always in any EFT, the question is just at what
order these novel effects appear. If NDA were any guide, one would expect them at
relatively high orders since their canonical dimensions are high. However, we are
dealing with a fine-tuned situation, and surprises are in stock.

For definiteness, let me consider neutron-deuteron (nd) scattering in the dibaryon
formulation, see Fig. 4.8. The simplest diagram consists of the transfer of one nu-
cleon from the dibaryon to the third nucleon, and it is O(mNg2

s /Q
2). A transfer back

adds another mNg2
s /Q

2 multiplied by a factor Q3/(4π) from the loop and a 1/Q
from the intermediate, dressed dibaryon, so it is of relative O(mNg2

s /4π)= O(1).
Thus, power counting says that in LO one has to sum all nucleon exchanges between
the dimeron and the third nucleon, resulting [88] in an integral equation for the T
matrix known as the Skorniakov–Ter-Martirosian equation. As always, corrections
can be treated in perturbation theory.

The behavior of this T matrix at large momentum turns out to depend sensitively
on the strength of the kernel of the integral equation, which in turn depends on
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Fig. 4.8 Diagrams
representing the T matrix for
the elastic scattering of a
neutron on a deuteron in
Pionless EFT. Notation as in
Fig. 4.6

the spins of particle and dimer. For a two-state fermion instead of a nucleon, when
the dimer has s = 0, the amplitude falls fast at large momenta and the solution of
Skorniakov–Ter-Martirosian equation is RG invariant, consistent with three-body
forces appearing only at high orders. The same is true for nucleons in all but the
S1/2 wave, and very accurate results for nd scattering follow from parameters fully
determined in 2N scattering [88, 95]. For example, for the S3/2 phase shift shown
in Fig. 4.9 excellent agreement with data is achieved already at N2LO. In particular,
the scattering length is postdicted as a3/2 = 6.33 ± 0.10 fm, to be compared to the
experimental value, 6.35± 0.02 fm. This example shows that Pionless EFT enables
nearly QED-quality nuclear physics.

On the other hand, for three bosonic particles or for nucleons in the S1/2 wave
of Nd scattering, the amplitude obtained from nucleon exchange alone has a
very peculiar Λ dependence, proportional to cos(lnΛ). A bound state of energy
O(Λ2/mN) is in the spectrum, representing the well-known “Thomas collapse” of
the ground state as Λ→ ∞. RG invariance can only be achieved if three-body
interactions are enhanced by ℵ−2 [96, 97]. A single non-derivative three-body inter-
action appears at LO, providing saturation to avoid the collapse. Higher-derivative
interactions are smaller by powers of Q/Mnuc, and in fact to NLO there is only
one parameter not fixed by 2N observables: the coefficient of the three-body force,
h (or equivalently E0). As a consequence, to this order three-body observables are
correlated through this one parameter. This explains [87], in particular, why results
obtained from 2N models cluster around a “Phillips line” in the plane generated
by all possible values of the S1/2 Nd scattering length a1/2 and the triton binding
energy Bt : the off-shell differences among 2N models are essentially captured by
one parameter. Any point on the EFT line fixes the LO 3N parameter, which, as a
function of Λ, displays an unusual, limit-cycle behavior [96]. If we use as input the
a1/2 experimental value, we find Bt = 8.54 MeV at NLO [98], to be compared with
the experimental value of 8.48 MeV. The resulting energy dependence of S1/2 Nd

scattering also comes out very well, as shown in Fig. 4.9.
The limit cycle in the three-body force reflects a residual, approximate discrete

scale invariance. At unitarity, the LO two-body T matrix is scale invariant in the
limit Λ→∞. The only bound state is at zero energy. The regularization and renor-
malization of the three-body problem breaks scale invariance, except for the discrete
scale invariance that survives as the cutoff takes values that are multiple of a value
determined by the three-body datum. A consequence is that a geometric spectrum
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Fig. 4.9 The S3/2 (left) and S1/2 (right) Nd K−1 matrices (in fm−1) as function of the square of
the center-of-mass momentum (in fm−2). Dots represent a cold-neutron measurement [99] and a
phase-shift analysis [100, 101]. Left: dashed and solid lines show the Pionless EFT results at LO
and N2LO, respectively. Right: dot-dashed, dashed and solid lines show the Pionless EFT results
at LO, NLO, and N2LO, respectively, while the squares come from a phenomenological potential
model [102]. From Refs. [95, 103], courtesy of H.-W. Hammer and L. Platter

of bound states appears, the famous Efimov effect. For large but finite scattering
length and non-zero ERE parameters, scale invariance is only approximate to start
with, and only bound states with binding energies � 1/(2μR2) are within the EFT.

Including Coulomb interactions in 3N calculations is a bit challenging, but it
has been done (see Ref. [104] and references there in). Interactions with external
photons, such as the triton electromagnetic form factor [105], are also beginning to
be investigated. For a recent example of application to cold atoms, see Ref. [106]

4.4.2.3 The Four-Nucleon System and Beyond

I can proceed in a similar way to larger systems. Faced with the appearance of a
3N force at LO, an obvious question is whether other few-body forces are also
leading. A hand-waving argument suggests they are not. The two-body system is
made stable in Pionless EFT by a balance between kinetic repulsion and potential
attraction. As we go to the three-body system, the number of pairs grows faster
than the number of particles, leading to a collapse unless an effectively repulsive
three-body force exists. As we add a fourth body, the number of triplets increases
faster than doublets, and no instability and dramatic cutoff dependence should arise.
Although a four-body force without derivatives exists, it might not be enhanced
by inverse powers of ℵ. With four spin-isospin states, we cannot construct a five-
or more-nucleon contact force without derivatives, so they are likely not to be LO
either.

Since by this argument stability comes from a balance between two-body at-
traction and three-body repulsion, one expects properties of larger systems, such
as four-body and nuclear-matter binding energies (if within Pionless EFT), to scale
approximately with the LO three-body parameter. This has been shown to be true
for the four-boson binding energy, at least over a limited Λ range [107]. In the 4N
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system one observes the Tjon line, which is the analog of the Phillips line, but for
the alpha-particle binding energy Bα instead of the S1/2 Nd scattering length a1/2.
This line is reproduced in Pionless EFT [108]. The LO EFT line depends a bit on
which 2N parameters are used as input, but in any case it is close to the experimental
point: at the correct Bt one finds Bα between 26.9 and 29.5 MeV, to be compared
to the experimental value of 28.3 MeV. This agreement suggests that the EFT is
converging for the alpha particle. An NLO calculation [109] seems to support this
conclusion.

In the region Mnuc�Q�ℵ the 2N T matrix has an approximate SU(4) sym-
metry in spin-isospin space [110]. Since the LO 3N force is also SU(4) symmetric
[87], Pionless EFT provides a rationale for the emergence of Wigner’s supermulti-
plet symmetry in nuclei.

However, a crucial question is how far we can go in A before pions can no longer
be considered short-ranged. After all, binding energies per nucleon, and thus binding
momenta, increase throughout the light-nuclear region as the number of nucleons
increases. An answer to this question can only be provided by explicit calculation.

Because the continuum methods used so far for A ≤ 4 tend to become unprac-
tical quickly, one is led to introduce an explicit infrared (IR) momentum regulator
or cutoff λ so as to discretize the set one-body states. One can think of 1/λ3 as
providing an effective volume to which the system is confined, just as the inverse
UV regulator, 1/Λ, can be thought of as a minimum accessible length scale. These
two regulators define the “model space” where the EFT is solved. At the end of the
calculation, we need to take the limit of a large model space, λ�Q�Λ.

In this context, two such IR regulators have been proposed and are being ac-
tively pursued. The first [111] borrows from lattice QCD: we define the EFT at N3

lattice points separated by a spacing a ∼ 1/Λ, which make a cubic volume with
sides of length L = Na ∼ 1/λ. The second [112] borrows instead from an exist-
ing nuclear-structure method, the No-Core Shell Model (NCSM): the EFT is solved
in a harmonic-oscillator well of frequency ω ∼ λ2/mN , with a maximum number
of shells 2n + l ≤ Nmax ∼ Λ2/(mNω)—where n (l) denotes the radial (angular-
momentum) quantum number—above the minimum configuration.

The limitation to an effectively finite volume poses the challenge of how to relate
the LECs to observables. At LO the three LECs can be fitted to the binding energies
of the lightest nuclei (deuteron, triton, alpha particle), with other binding energies
being predictions (or postdictions). For example, using the NCSM method, one finds
[112] for the alpha-particle excited state an excitation energy Eα∗ = 18.5 MeV, in
remarkable (for LO) agreement with the experimental value 20.2 MeV, while for
the 6Li ground state B6Li = 23 MeV to be compared to the experimental result,
32 MeV, in line with an expansion parameter |r2|/|a2| ∼ 1/3. However, the growth
in number of LECs with order demands the more abundant scattering data as input.
Fortunately, for both methods we can related the energy levels in the model space
to 2N scattering parameters [113, 114]. Thus, the 2N LECs can be fitted to 2N
levels and, with just a few few-body inputs, predictions made for systems with larger
number of particles.
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Just as before, such a framework can be applied with simplifications also to cold
atoms, see for example Ref. [115]. And these methods are being generalized to
Chiral EFT—for reviews and more details, see Refs. [116, 117]. But these new ideas
can also be used with more phenomenological input. The generic idea of using λ
and Λ to extrapolate to larger model spaces, for example, is useful in calculations
with phenomenological nuclear potentials [118, 119]. Conversely, other ab initio
methods could be brought to bear on Pionless EFT. While Chiral EFT is the ultimate
goal, because of its simplicity Pionless EFT plays an important role in providing a
paradigm for the development of nuclear EFTs.

4.4.3 Halo/Cluster EFT

Pionless EFT simplifies the treatment of light nuclei, but its application to larger
nuclei—even with a powerful ab initio method such as the NCSM—still faces dif-
ficult computational challenges. One would like to devise further simplifications in
order to extend EFTs to even larger nuclei.

One might, in particular, wonder about the implications of the existence of
the fine-tuned scale ℵ. While we expect the typical energy per nucleon to be
O(M2

nuc/mN), there are some nuclear states with energies closer to O(ℵ2/mN).
This is, in fact, the case of light nuclei, which, as we have just seen, seem to
be within the regime of Pionless EFT. But this also happens in two more general
classes of states: “halo” and “cluster” nuclei, in which one or more clusters of nu-
cleons (“cores”) with the structure of typical nuclei are surrounded by loosely bound
(“halo”) nucleons. Because of saturation, the radius of a typical cluster with Ac nu-
cleons should be Rc ∼A1/3

c /Mnuc ≡ 1/Mc . As long as ℵ�Mc, we can treat cores
as effective degrees of freedom, thus generalizing Pionless EFT, where Ac = 1, to
Halo/Cluster EFT [120].

These classes of systems exhibit shallow S-matrix poles, either on the imaginary
axis (bound states) or in the lower half of the complex momentum plane (reso-
nances). Many nuclei display, or are good candidates to display, halo/cluster struc-
ture with various types of cores. The simplest and perhaps most clear-cut examples
involve alpha-particle cores, for which the excitation energyEcore � 20 MeV. While
5He is not bound, the total cross section for neutron-alpha (nα) scattering has a
prominent bump at Ehalo ∼ 1 MeV, interpreted as a shallow P3/2 resonance. To de-
scribe scattering at such low energy, a two-body α+n approach should suffice. 6He
is bound, but the removal energy for two neutrons from 6He is againEhalo � 1 MeV,
making this a three-body, α + n+ n halo nucleus. Similarly, 8Be is not bound but
αα scattering shows an S0 resonance at Ehalo � 0.1 MeV. And both 9Be and 12C
exhibit states near three-body thresholds, respectively α+α+n and α+α+α—the
latter being the famous Hoyle state that plays an important role in the formation of
C and O, and thus you and me, in the universe. Then we can consider also structures
with protons, e.g. 5Li as α + p. For a compilation of data on these and some other
halo/cluster states (and much more), see Ref. [121].
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In Halo/Cluster EFT we thus consider explicitly a field for the core, for example
a scalar field α for the α core of mass mα :

Lhalo = N̄
(
iD0 + D2

2mN
− δmN

2
τ3

)
N + ᾱ

(
iD0 + D2

2mα

)
α

− 1

4
FμνF

μν + · · · +L≥2. (4.74)

It is again extremely convenient to express L≥2 using dimeron fields, in this case
a spin-3/2, isospin-1/2 field T3 and a scalar, isoscalar φ for the 5Li/5He and 8Be
ground states, respectively:

L≥2 = T̄3

[
σ3

(
iD0 + D2

2(mN +mα)
)
−�3

(
1+ δ�3

�3

1+ τ3
2

)]
T3

+ φ̄
[
σ0

(
iD0 + D2

4mα

)
−�0

]
φ + g0√

2
[φ̄αα +H.c.]

+ g3√
2

[
T̄3

(
1+ δg3

g3

1+ τ3
2

)
S · (αDN +NDα)+H.c.

]

+ h3T̄3T3(DN) ·DN + · · · , (4.75)

where S is again the spin transition matrix, �0,3, δ�3, g0,3, δg3, and h3 are the
most important LECs, and σ0,3 are signs. This Lagrangian has a form similar to
Eq. (4.67), except for the spin/isospin differences and the P -wave coupling of the
5He/5Li dimeron.

Similar Lagrangians can be written for other core types. If the core has a small
number of low-lying excited states, they can be included as extra fields just like
the Delta in Chiral EFT. The main drawback of Halo/Cluster EFT is the relatively
large number of undetermined LECs, as different cores demand different LECs. As
in other EFTs, one would like to eventually determine the LECs by matching low-
energy amplitudes to ab initio calculations based on Pionless or Chiral EFTs. In the
meantime they can be fitted to data.

4.4.3.1 Two-Body Systems

As with Pionless EFT, the first step is to determine the two-body LECs. Were we
looking at a core-nucleon system that supports a shallow S-wave bound state, things
here would be very similar to the 2N case. But many of the two-body systems of
interest in Halo/Cluster EFT, and in particular Nα and αα, have a shallow res-
onance instead of a bound state. The different pole structure requires a different
power counting than in the 2N system. In this case the T matrix will be made out
of dimeron propagators connected by two-particle bubbles just as before. But the
required two-pole structure arises if both the kinetic and residual-mass terms in the
dimeron propagators are of similar size.
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Fig. 4.10 Diagrams representing the reduced T̃ matrix for the elastic scattering of a nucleon on
an alpha particle in Halo/Cluster EFT. A nucleon (alpha particle) is represented by a solid (dotted)
line, and a dibaryon by a double solid/dotted line

The particular case of a narrow resonance, κI � κR , requires a single fine-tuning
in the dibaryon mass [122]. For Nα, �3 ∼ ℵ2/μ3N , where μ3N =mNmα/(mN +
mα) is the Nα reduced mass, while other parameters do not depend on ℵ, for ex-
ample g2

3 ∼ 2π/(μ2
3NMc). For simplicity, let me focus on nα, Coulomb corrections

being necessary for pα. The T matrix in the P3/2 channel can be written as [120]

T = g
2
3k

2

3
(2 cos θ + i sin θσ · n̂)T̃ , (4.76)

in terms of n = p × p′/|p × p′|, the scattering angle θ , and the reduced T̃ matrix
shown in Fig. 4.10. The contribution from a single dibaryon propagator is

T̃1d = 1

�3 − σ3k2/(2μ3n)
, (4.77)

which is the analog of Eq. (4.68) in Pionless EFT. For Q∼ ℵ, this is O(μ3N/ℵ2).
For the once-iterated dibaryon propagator, the intermediate bubble is similar to Eq.
(4.69), except for the presence of two extra momenta in the numerator inside the
integral, which is therefore more sensitive to the cutoff:

T̃2d = μ3ng
2
3

6π
T̃ 2

1d

[
γ3Λ

3 + γ1Λk
2 + ik3 +O

(
k4

Λ

)]
, (4.78)

where γ3 is another number that depends on the specific regulator choice (γ3 = γ1/3
for a sharp momentum cutoff, for example). This more severe cutoff dependence
can be absorbed in a renormalization of both g2

3 and �3 and, as usual in an EFT,
after renormalization the loop contributes a non-analytic term ik3. Relative to T̃1d ,
this contribution is O(ℵ/Mc), that is, one order down in the expansion. This means
the dimeron propagator can generically be treated in perturbation theory, the LO
amplitude being given by Eq. (4.77),

T (0) ∼ 2π

μ3NMc

[
1−O

(
Q2

ℵ2

)]−1

. (4.79)

With appropriate signs, this amplitude generates a pair of shallow poles on the real
axis at Q∼±ℵ. The NLO unitarity correction (4.78) moves these poles below the
axis, but the resulting width is relative small, meaning the resonance is narrow.
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Fig. 4.11 Total cross section (in barn) for nα scattering as a function of the neutron kinetic energy
(in MeV) in the α rest frame below (left) and around (right) the P3/2 resonance. Diamonds are
evaluated data [123], and black squares are experimental data [124, 125]. Left: the dashed, dot–
dashed and solid black lines are the Halo/Cluster EFT results without resummation at LO, NLO,
and N2LO, and the dashed and dot-dashed gray lines the Halo/Cluster EFT results with P3/2 re-
summation at LO and NLO, respectively. Right: the dashed and solid lines are the Halo/Cluster
EFT results with P3/2 resummation at LO and NLO, respectively. (The dot-dashed line, which
can be ignored, shows the LO result in a modified power counting with resummation in the P1/2
channel as well.) From Refs. [120, 122]

Now, when the external energy is in a window of O(ℵ2/Mc) around the reso-
nance the denominator in the bare propagator becomes anomalously small, requir-
ing resummation of the propagator and bubble insertions [122] as in the S-wave
bound-state case in Pionless EFT (4.73) or in the vicinity of the Delta pole in Chiral
EFT:

T̃1d + T̃2d + · · · = 6π

μ3ng
2
3

[(
6π�3

μ3ng
2
3

− γ3Λ
3
)
−

(
6πσ3

2μ2
3ng

2
3

− γ1Λ

)
k2 − ik3

]−1

×
[

1+O

(
k

Λ

)]
, (4.80)

which has the form of the ERE for a P wave. From this expression renormalizability
is clear. It is also apparent that the scattering volume (the P -wave analog of the
scattering length) is large, ∼1/(Mcℵ2), while the effective momentum (the P -wave
analog of the effective range) is natural-sized. This leads to the characteristic bump
in the cross section near the resonance energy. If the resonance is not particularly
narrow a second fine-tuning is needed in the two-particle/dimeron coupling, leading
to the same resummation in the whole low-energy region [120]. In this case the
effective momentum is small, ∼ℵ. In either case, other ERE parameters come out
of natural size.

A good description of nα scattering, displayed in Fig. 4.11, is obtained with
either power counting [120, 122], the amount of fine-tuning in the 5He ground state
remaining unclear. When the LECs are fitted to an nα phase-shift analysis, one
finds Mc ∼ 100 MeV and ℵ ∼ 30 MeV, consistent with Pionless EFT. There is in
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Fig. 4.12
Coulomb-corrected S-wave
αα phase shift (in degrees) as
a function of the laboratory
energy (in MeV). The dotted
and solid lines are the
Halo/Cluster EFT results at
LO and NLO, respectively.
Solid circles represent
empirical phase shifts [127]
and the dash-dotted line is an
ERE fit. From Ref. [126]

principle no difficulty to include the electromagnetic interactions needed for proton
halos. The extension to pα scattering is thus straightforward, except for a less clear
separation of scales.

Coulomb is also very important for the αα system. This system is very peculiar
because the lowest resonance, with Jπ = 0+, appears at a momentum that is small
compared to the scale Coulomb becomes important, αμαα , where μαα = mα/2 is
the αα reduced mass. Coulomb has to be included at LO with the dimeron propa-
gator, but it can be approximated by a Q/αμαα expansion that makes it, in a sense,
a short-range interaction. Despite its small nominal value, the resonance width is
actually large in the scale set by ℵ. The position and width of the resonance, and the
αα phase shifts, can be well reproduced at LO and even better at NLO, as shown
in Fig. 4.12 [126]. However, this is only possible only at the cost of cancellations
between the short-range interaction and Coulomb at the level of factors of 100 and
10 in the scattering length and effective range, respectively. Such an additional fine-
tuning is extremely surprising, and not at all understood.

External probes can be included as well. For cores for which the two-body sys-
tem sustains a bound state, one can for example consider astrophysically interesting
neutron-capture reactions, such as p + 7Be → 8B + γ , which can be analyzed as
was p+ n→ d + γ in Pionless EFT [128]. Halo/Cluster EFT offers the possibility
of a controlled extrapolation of data to immeasurably small energies. For work in
this direction, see Ref. [129] and references therein.

4.4.3.2 Three-Body Systems and Beyond

As for Pionless EFT, the real power of Halo/Cluster EFT lies in going beyond the
ERE. For few-body systems, the question resurfaces of the relative size of few-body
forces in the presence of fine-tuning, now with nucleon-core and core-core interac-
tions that, as we have just seen, have quite a different power counting compared to
the 2N system.
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For α-core systems the two-body forces have been determined to NLO: the
Nα and αα interactions from Nα and αα scattering, respectively, as described
in Sect. 4.4.3.1, and the 2N interaction from 2N scattering, as described in
Sect. 4.4.2.1. We can then test RG invariance without three-body forces for the
three-body halo states in 6He, 9Be and 12C, just as we did for the p+ n+ n system
[87] in Sect. 4.4.2.2. This issue has now been settled only in 6He [130], 9Be being
under study [131].

6He has been studied by adapting the Gamow Shell Model to the LO, energy-
dependent interactions in the power counting of Ref. [120]. Without three-body
forces, the three-body ground state collapses, while the simplest three-body force,
shown explicitly in Eq. (4.75), was found sufficient for renormalization: its LEC can
be adjusted to reproduce the experimental binding energy of 6He at any cutoff. This
three-body force is the EFT rendition of the phenomenological strategy of allowing
the nn interaction to be empirically modified by the presence of the core. One can
now proceed to calculate other 6He properties, and more-neutron members of the
He family, such as 8He. Of course, one needs to check whether four-body forces are
absent from LO as it seems to be the case for p+ p+ n+ n [108], as discussed in
Sect. 4.4.2.3. Note that 6He is Borromean, but its different nature compared to triton
in Pionless EFT does not seem to diminish the importance of three-body forces.

The EFT is also a tool to look for Efimov-like states in halo nuclei. Several candi-
date nuclei with S-wave interactions have been studied in this fashion, giving some
tantalizing hints of the answer (see Ref. [132] and references therein). Recently even
the form factors of three-body S-wave halos have been calculated [133].

4.4.4 Summary

QCD exhibits in the two-nucleon system a certain amount of fine-tuning, which
results in shallow bound states and resonances in light nuclei. These states can be
described by EFTs with only contact interactions: Pionless EFT with only nucleon
degrees of freedom, and Halo/Cluster EFT with additional degrees of freedom for
tight clusters of nucleons. Good descriptions of data on S-shell nuclei and α-core
halo/cluster states can be achieved, but in the case of the αα system only at the cost
of a baffling additional fine-tuning, this time between strong and electromagnetic
interactions.

4.5 Conclusions and Outlook

I introduced the general concept of EFTs. Using the example of atoms in NRQED,
I presented the EFTs of QCD for typical nuclei (Chiral EFT), for the lightest nuclei
(Pionless EFT), and for larger nuclei with halo or cluster structure (Halo/Cluster
EFT). Along the way, I alluded to some of the applications to cold-atom physics.
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I described many of the successes of EFT approach, although my emphasis has
been on the conceptual development. The main message is that EFT provides the
framework to describe nuclear physics within the Standard Model (which itself can
be viewed as an EFT): it is consistent with the symmetries, incorporates hadronic
physics, and has a controlled expansion.

The frontier is to push EFTs in the direction of heavier nuclei. Is there a con-
nection to the traditional Shell Model, perhaps generalizing Halo/Cluster EFT? For
heavy, deformed nuclei, an EFT has been developed for the very low-energy rota-
tional bands [134], and certainly other nuclear regimes await new EFTs. The EFT
program is paving the road for a QCD understanding of nuclear structure and reac-
tions, while uncovering some new, beautiful renormalization phenomena.
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Chapter 5
Direct Reactions at Relativistic Energies:
A New Insight into the Single-Particle Structure
of Exotic Nuclei

Dolores Cortina-Gil

5.1 Introduction

Direct reactions are an excellent tool for the investigation of nuclear structure. They
proceed in a single step and are very fast, ≈10−22 s, taking simply the time needed
for the projectile to traverse a target nucleus. Usually, only a few bodies (nucleons)
participate in the reaction. Moreover, only a few degrees of freedoms are involved
and the momentum transfer associated is not very high. They are thus rather periph-
eral interactions mostly surface dominated. All these properties make the reaction
mechanism easier to interpret and allow the use of a certain number of simplifica-
tions in their description. The high selectivity associated with direct reactions is also
responsible for the dominance of single-particle properties over dynamical effects,
opening the possibility of using them as spectroscopic tools.

The spectra of possible direct reactions is rather large and includes, among oth-
ers, processes related to elastic, inelastic, transfer and knockout reactions. The use
of direct reactions was vigorously extended throughout the 60–80 s with the advent
of the first accelerators dedicated to the study of stable isotopes. In the 90’s, the
availability of exotic beams heralded a new golden age with the extension of struc-
tural studies to these new rare species. On top of the relative simplicity, the reaction
cross-section is rather large, allowing their use since the first beam deployment de-
spite the rather low intensities of these radioactive beams.

Secondary beams at different energy regimes became widespread across several
experimental facilities all over the world. Elastic and inelastic reactions induced by
secondary exotic projectiles took hold as a powerful tool to gain information on the
radius and matter densities associated with those exotic species.

These first experiments lead to others, more specific, that addressed the study
of structural properties. Low energy facilities concentrated on the study of trans-
fer reactions, able to provide detailed information on the single-particle properties
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of the different states connected with the reaction (see chapter by Joaquín Gómez
Camacho and Antonio Moro in this volume for further information on this topic).

In addition, the exploration of removal reactions became very popular among the
high energy facilities. These reactions are the result of the interaction between a fast
projectile and a target at rest. The nature of the projectile-target interaction can be
nuclear (light target) or Coulomb (heavy target). For large impact parameters, the
reaction would be peripheral, and would result in the dissociation or breakup of the
projectile into one or a few nucleons (neutrons or protons) that would be ejected
and a quasi-projectile (very often called core-fragment) that would continue on its
path largely unaffected by the reaction, with almost the same velocity as the inci-
dent projectile. Experimentally, the selection of the reaction channel is achieved by
detecting the incident projectile and the emerging fragments (with mass A-1 in the
one nucleon-removal case). The survival of the fragment is a probe of the peripheral
character of the reaction.

The superposition of different removed-nucleon + core-fragment configurations
resulting after breakup creates a realistic picture of the original exotic projectile
wave function. Therefore, the projectile wave function can be factorised as:

|Projectile〉 =
∑
i

Ai
(|core〉 ⊗ |nucleon〉)

i
, (5.1)

where |core〉 and |nucleon〉 represent the core-fragment and removed nucleon wave
function and A are the weighted probability1 associated with each configuration.
The detection of the gamma de-excitation of the fragment is used to discriminate
different core configurations in the original projectile. Figure 5.1 left shows the re-
action mechanism for the particular case of one-neutron knockout of a 23O projectile
by a light 12C target.2

Different names have been used in the literature to refer to these kind of reac-
tions (i.e.: nucleon removal, nucleon breakup and nucleon knockout). This last name
was adopted by the NSCL scientists in their publications and is probably the most
widely used (see review articles and references therein [1–3]). This term (knock-
out) was already used more than three decades ago to refer to Quasi-Free Scattering
(QFS) reactions induced either by high energy protons and electrons, (p,2p) and
(e, e′p) [4, 5], and known to be very powerful spectroscopic tools. Figure 5.1 right
shows the schematic representation of the quasi-free process induced by high energy
exotic projectiles.3

QFS can be understood as a process in which a high energy particle knocks a
nucleon out of a nucleus without any further significant interaction between the nu-
cleon and the incident and the outgoing particles. After the reaction, and in the par-
ticular case of proton-knockout, the two protons (the target in our inverse kinematic
example and the removed proton) emerge in the forward direction with a very strong

1Related to the spectroscopic factors.
2Reaction performed in inverse kinematics.
3Again illustrated by a reaction in inverse kinematics.
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Fig. 5.1 Left: Schematic representation of a one-neutron knockout of an unstable 23O projectile
by a stable carbon target. A loosely bound neutron (not recorded) is removed during the reaction,
leaving a core of 22O. Right: Schematic representation of a quasi-free reaction induced by an
unstable 23O projectile on a proton target (p,2p). Two strongly correlated protons and the A-1
fragment (22N in this case) are emitted (and detected)

angular correlation.4 The detection (momentum and direction) of both nucleons is
necessary to provide kinematically complete measurements.5

Indeed proton-knockout using high-energy electrons (e, e′p) was studied exten-
sively in the 1980s, and was considered the only experimental method able to pro-
vide absolute spectroscopic factors in well-bound nuclei [6, 7]. QFS experiments are
thus considered a quantitative tool for studying single-particle occupancies and cor-
relation effects in the nuclei. They have been mostly exploited for reactions on stable
nuclear targets and only very few QFS experiments to date involve rare species.

In this lecture, we will refer as knockout to the nucleon-removal from a projectile
after reaction with a light target. The detection of the remaining fragment (with mass
A-1) will be required but the knockouted nucleon will not be recorded. QFS will
refer to reactions of a projectile with a proton (or electron). In this case, the detection
of both nucleons (the removed one and the target) and eventually the A-1 fragment
is demanded and ensures fully exclusive measurements. It is our aim to provide an
overview of the achievements and limitations related to the application of knockout
and QFS reactions as spectroscopic tools for the particular case of exotic nuclei.

We would like to stress the complementary role of the different approaches so
far discussed. Transfer reactions yield high cross sections (∼1 mb) at relatively low
energies (in the range from few to 10–15 MeV/nucleon). The optimum range for
knockout and QFS reactions are projectile energies ≈100 MeV/nucleon and higher.
The cross section of the nucleon knockout process can vary from well above 100 mb,
for loosely bound nuclei, to ∼1 mb for tightly bound nuclei. The cross section for
the quasi-free channel, imposes a strong kinematical condition and it, is thus smaller
and also depends on the separation energy of the removed nucleon, the removal of
valence nucleons translates in larger cross sections.

4The two protons are emitted back-to-back (�φ ≈ 180◦) and with an average polar opening angle
θ ≈ 90◦.
5In some cases the fragment is also detected providing redundant information.
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In the case of knockout reactions, the strong absorption concentrates the reaction
probability at the surface, allowing mainly to probe the outer part of the projectile
wave-function. The peripheral nature of the reaction is also true for both transfer and
Coulomb breakup reactions. On the other hand, the use of QFS reactions induced by
exotic projectiles on a proton target, allows one to determine the spectral functions
of protons and neutrons (in the projectile) over a wide range, from the weakly bound
valence nucleons to the deeply bound core states. These studies enable a more com-
plete investigation of the projectile wave-function, giving access to different regions
of a nucleus and probing different types of correlations that could exist within the
nucleons.

The experimental possibility of working with high projectile energies can also
be of particular interest. In a good approximation, at beam energies above 50–
70 MeV/nucleon, the internal degrees of freedom of a nucleus can be considered
“frozen” during the collision [8–10]. Only the nucleons directly participating in the
interaction need to be taken into account in the theoretical description, the others are
considered as simple spectators, thus simplifying the reaction mechanism descrip-
tion. The use of a semi-classical approximation of the reaction with regard to the
impact parameter of the relative motion of projectile and target is permitted.

The production of high-energy secondary beams is achieved via in-flight projec-
tile fragmentation (or fission) [11], using inverse kinematics, which means that the
projectile is heavier than the target, having interesting kinematic consequences. The
fragments produced are focused in the forward direction, which contributes to in-
crease the overall transmission of these secondary beams to the secondary reaction
target. These production mechanisms originate cocktail beams, formed by different
isotopes. The selection of the nuclei of interest is done by help of powerful mag-
netic spectrometers [11] that identify “in-flight” the nuclear species, allowing the
selection of a single isotope within the spectrometer’s acceptance.

5.1.1 First Experiments

The shell model of the atomic nucleus was inspired by the atomic shell model. The
main assumption of the nuclear shell model consists of a description of the nuclear
interaction by a central potential with the ingenious idea of a spin-orbit coupling. To
first order, each nucleon in a nucleus is assumed to move independently in a mean
field resulting from interactions with the rest of nucleons. At the middle of last
century the basis of this model was perfectly established [12, 13]. The major evi-
dence of the adequacy of this orbital shell configuration came from the observation
of magic numbers predicted by the model in stable nuclei, the only ones available
for experimentation. Many experiments contributed to this important task, includ-
ing those focused on the determination of energy spectra of the low-lying states,
spins, magnetic moments, the observation of polarization effects of nucleons in nu-
clear collisions and the internal momentum determination of nucleons in proton and
electron induced QFS reactions. Since then, the nuclear shell model is considered a
cornerstone to describe the structural properties of nuclei.
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Experiments of (p,2p) were first undertaken in 1952 in Berkley [14, 15] with
the irradiation of protons on stable nuclei and the observation of coincident pro-
ton pairs, strongly correlated, emerging from the target. The interpretation of these
experiments relied on the assumption that both the incident and the knocked-out
proton were free. The angular correlation of the proton pair was interpreted as a con-
sequence of the momentum distribution of the protons in the nucleus. Additionally,
the separation energy distribution, evaluated for a given projectile particle, showed
different structures (peaks) that were related to the binding energies of the various
nuclear shells from which the protons were ejected. A number of experiments were
then performed at Chicago, Harvard, Hawell, Orsay and Uppssala [16, 17], ded-
icated to the study of nuclei up to 40Ca. The exploration of heavier nuclei, with
smaller energy differences between shells and lower cross sections, was not ad-
dressed at this early stage. The poor energy resolution achievable in these experi-
ments was the limiting factor.

Equivalent experiments employing high energy electrons appeared as an alter-
native, the nuclear transparency of the electrons was considered as an advantage.
The distortion of the associated momentum distributions was expected to be much
smaller and offered the possibility of studying inner shells. The drawback was that,
these experiments required the development of powerful electron accelerators, pro-
viding intense beams to compensate for the small electromagnetic cross-sections.
Very successful experiments of (e, e′p) reactions were carried out in different fa-
cilities, for nuclei ranging from 2H to 209Bi. Profiting from the higher experimental
resolution [4, 5, 18–21], transitions to many states in the resulting nucleus could be
separated and the corresponding momentum distributions accurately measured.

The 80’s became again a very exciting period with the advent of the first radioac-
tive nuclei beams. The first experiments with radioactive secondary beams were
performed more than fifty years ago ([22] and references therein). They concen-
trated on radioactivity experiments (i.e.: decay radiation, masses and determination
of ground-state properties). Subsequent technological progress made it possible to
apply techniques developed for stable beams to the case of secondary beams.

The advent of fast radioactive beams produced by projectile fragmentation and
the development of the in-flight identification technique for the emerging fragments
was an important milestone in the systematic study of unstable nuclei. The exper-
imental access to nuclei away from the valley of stability enabled the discovery of
many interesting phenomena such as dramatic changes in the neutron density at the
surface of certain nuclei producing very low density tails (i.e.: nucleon halo or skin).
The observed inversions and re-arrangements in the nuclear orbitals pushed an evo-
lution of our traditional knowledge, demanding a revision of certain aspects of the
traditional shell model, and were the driving force for an intense experimental and
theoretical work to better understand the single-particle properties and the role of
nucleon-nucleon (NN) correlations in these newly available exotic nuclei.

It is important to mention the pioneering work of Tanihata and collaborators in
the systematic investigations of matter radii of exotic nuclei [23, 24]. A few years
later, nucleon-knockout [25] was used for the first time to obtain spectroscopic infor-
mation on unstable nuclei. Since then, this method has been used extensively. The
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first knockout experiments focused on the study of neutron-halo states and were
later extended to other exotic species. The first cases investigated concentrated on
lighter nuclei, mainly due to the technical limitations associated with the produc-
tion of secondary beams. It is important to keep in mind that even today the neutron
dripline6 has only been reached for nuclei with low Z (up to Z = 12). Consequently,
this is where most of the knockout experiments have been performed so far.

NSCL7/MSU in USA, was the first laboratory to implement the nuclear-knockout
technique [26]. For many years, knockout experiments at NSCL have focused on
the study of n-rich nuclei at intermediate energies (50–150 MeV/nucleon) [1, 3]
(and references therein). They also pioneered the application of the knockout tech-
nique to the study of heavier nuclei [27] and have more recently extended their
experimental studies to the removal of two nucleons [3, 28–33]. The knockout tech-
nique was also applied on several occasions [34–36] in GANIL8 France, working
on a slightly lower energetic domain (50–80 MeV/nucleon). Scientists at RIKEN9

in Japan, concentrated on the study of Coulomb induced breakup [37, 38]. More
recently, to coincide with the commissioning of RIBF10 and BigRIPS11 [39, 40]
they undertook the investigation of very exotic isotopes using one and two neutron
knockout [41]. The German laboratory GSI,12 working in a higher energy regime
(500–1000 MeV/nucleon), has carried out investigations on both Coulomb [42–44]
and nuclear [45–55] induced knockout. All this work has contributed to modify the
established picture of nuclei, proving that the nuclear orbital organization far from
the beta stability is different. The importance of different effects (i.e.: the tensor
force, pairing interaction, three nucleon forces, coupling to the continuum, etc.),
might play a prominent role in these rare species, and offer new insights on the
nuclear landscape.

QFS, can be also regarded as NN scattering channels in nuclear fields and thus
could give a direct access to study the modification of nucleon properties in the nu-
clear medium, an interesting feature of nuclear physics not much explored so far.
Experiments of (p,2p) reactions on different (6Li, 12C, 16O and 40Ca) targets [56]
performed at RCNP13 in Osaka (Japan) profited from high resolution detection of
the two outgoing protons. They allowed to study knockout from deeply bound nu-
cleon states. They also allowed, in the case of 12C, a first measurements of the decay
particles coming from deeply bound states, offering a qualitative comparison with
the shell model and microscopic cluster calculations [57]. It is also worth to mention
the electron-induced QFS experiments performed at Jefferson Lab (USA) in the last

6Limit of existence as a bound nuclear state.
7National superconducting cyclotron laboratory.
8Grand accélérateur national d’ions lourds.
9Nishina center for accelerator-based science.
10Radioactive ion beam factory.
11Separator and zero degree spectrometer.
12Helmholtzzentrum für Schwerionenforschung.
13Research center for nuclear physics.
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decade. The analysis of the reaction of 12C(e, e′p) reveals a large fraction of events
that could be identified as proton-neutron pairs in 12C. These events were interpreted
as the result of the short-range component of the NN potential. The observation of
a small amount of proton-proton and neutron-neutron pairs was also interpreted as
a fingerprint of the tensor force [58].

Traditionally all these correlation effects and medium modifications have not
been considered in the interpretation of direct reactions, but detailed studies have
shown the eventual impact they could have. In the particular case of knockout re-
actions, this effect will not affect the shape of the momentum distribution14 of
the emerging fragment but would have an impact on the correct estimation of the
cross-sections, particularly at low energies [59]. It is neither excluded, that the so-
called “correlations” are simply the result of a insufficient description of the reaction
mechanism.

The lecture is structured as follows. After this introduction, the main section is
devoted to the analysis and interpretation of knockout reactions induced by radioac-
tive beams, particularly in connection with their use as spectroscopic tools. We will
finish with the presentation of the quasi-free channel induced by relativistic exotic
nuclei on proton targets, which appears as an attractive extension of this kind of
studies to probe the deeply bound states of rare species and offers the possibility of
performing fully exclusive measurements.

5.2 Knockout Reactions

5.2.1 Extraction of Information in Knockout Reactions

In a knockout reaction a fast projectile with mass number A impinges on a target
at rest (preferably light). The interaction projectile-target results in the removal of a
single nucleon. It proceeds in a single step and is a very peripheral reaction, guaran-
teeing the survival of the A-1 fragment. The study of knockout reactions in the lab-
oratory occurs at relatively high energies (typically above 100 MeV/nucleon, even
though many experiments have been done at lower energies ≈50–80 MeV/nucleon),
where the use of semi-classical descriptions of the reaction mechanism is permitted.
When describing the reaction mechanism of the knockout process, different contri-
butions have to be considered.

• Stripping refers to cases where the removed nucleon reacts with the target, the
nucleon is scattered to large angles and the target is excited.

• Diffraction or elastic breakup refers to reactions where the target remains in its
ground state and the removed nucleon is emitted in forward direction.

14The momentum distribution themselves have a small dependence on the binding energy of the
removed nucleon, but depend on the nucleon’s orbital angular momentum, which enables identifi-
cation of shell occupancy.
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• A third contribution, called Coulomb dissociation, corresponds to electromag-
netic elastic breakup and plays a minor role in the case of light targets, as it is
the case of the reactions that will be described in this paper, and thus will not be
discussed in detail.

Within this scenario the cross-section can be expressed as:

σ = σstrip + σdiff (5.2)

Depending on the beam energy, the relative importance of each process is dif-
ferent. At high beam energies the one-neutron removal cross-section is dominated
by stripping whereas at lower energies, 50–60 MeV/nucleon, both contributions are
similar [60]. As a general statement, the use of direct reactions as a spectroscopic
tool demands a very detailed and realistic description of both the nuclear structure
and the reaction mechanism.

In the case of nucleon knockout, the reaction mechanism has been often given
by the (semi-classical) eikonal approximation, providing a geometrical description
of the reaction in terms of the impact parameter of the relative motion of projectile
and target. The strong point of the eikonal description is the relative simplicity as-
sociated with both the calculations involved and the required physical inputs. For
the single step assumption to be valid, sufficiently high energies must be employed
to allow for the use of the adiabatic approach, in which the internal motion of the
nucleons inside the nucleus is neglected during the collision [8, 10]. The nucleons
not directly involved in the reaction are considered simply as “spectators”. As it
will be shown in the following sections, many knockout experiments can also deter-
mine spin and parity (Iπ ) of the remaining fragment from the measurement of the
γ de-excitation of the fragment, enabling exclusive measurements to given states
(n, l, j ).

There are many references describing in detail the eikonal methods [1, 8, 9, 61–
63]. We will illustrate in this section the case of a system that follows a nucleon-
knockout reaction, described by the subsystems after breaking: the core-target and
the nucleon-target [42, 63]. The cross-sections can be calculated as follows:

σdiff =
∫
db

[〈∣∣(1− ScSn)∣∣2〉− ∣∣〈(1− ScSn)〉∣∣2] (5.3)

σstrip =
∫
db

〈(
1− |Sn|2

)|Sc|2〉 (5.4)

The cross-sections are expressed as a function of the profile functions S [64, 65],
linked in the eikonal model to the scattering matrix and evaluated from the eikonal
phase-shifts. The profile functions for the core-target (Sc) and nucleon-target (Sn)
depend on the impact parameter and are calculated using density distributions that
reproduce measured cross-sections (see [42] for the particular case of 11Be neutron-
knockout). The theoretical cross-sections for each of the above mentioned pro-
cesses, can thus be calculated individually for the occupancy of each subshell or-
bital for a given state (n, l, j ), relating to the single-particle cross section for each
subshell at that energy.
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Fig. 5.2 Probability
evaluation for one-neutron
knockout in 17O (d5/2
neutron with Sn = 4.1 MeV).
The dashed curve represents
the total reaction probability.
The dash-dotted line is the
neutron reaction probability,
i.e.: 〈1− S2

n〉, whereas the
dotted line corresponds to
core survival probability, i.e.:
S2
c . The solid line is the

neutron reaction probability
times the core-survival
probability [68]

Other authors have worked with descriptions providing a pure quantum treatment
of the reaction (the eikonal makes use of a classical description for the projectile
movement). These approaches can only account for the elastic (or diffractive) term,
ignoring the stripping that can be important in these reactions. Some attempts of
using these approaches can be found in Refs. [66, 67].

Using the eikonal approach, we can also probe the peripheral character of this
kind of reactions. If one assumes identical impact parameter for both projectile and
core,15 the core-target profile function can be taken outside the expectation value
and the probability evaluation can reduce to

P(b)= S2
c (b)

〈
1− S2

n(bn)
〉= S2

c (b)
∫
d3r

∣∣φnlj (r)∣∣2[1− S2
n(bn)

]
, (5.5)

with φnlj , the single-particle wave function of specific states, expressed as a function
of the relative core-nucleon distance. The terms involved in this expression represent
the reaction probability of the nucleon with the target (〈1− S2

n〉), and the survival of
the core Sc. This calculation allows for instance to evaluate the one-nucleon knock-
out with a given orbital angular momentum, and is very helpful to understand the
surface dominance of this kind of reaction. Figure 5.2 shows an example of the
probability evaluation for the case of 17O considering the knockout of a d5/2 neu-
tron [68]. One can observe a concentration of the neutron knockout probability at
the nuclear surface.

To compare the evaluated single-particle cross-sections with the experimental
ones, the former need to be normalised by the spectroscopic factor (C2S), associ-
ated with each occupied subshell for this particular state. The result provides the
theoretical cross-section (see (5.6)) for the removal of a nucleon from each of the
considered subshells for this state which, when they are summed, yield the theoret-

15No recoil limit.
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ical cross-section for neutron removal from this state.

σtheo =
∑
j

C2S(Iπ ,nlj)σsp(nlj) (5.6)

The sum, for all bound states, yields the complete theoretical cross section for the
reaction channel under the particular conditions considered (target, beam energy,
etc.). Section 5.2.3.1 includes examples of these kind of calculations applied to the
11Be and 8B case.

A spectroscopic factor is formally defined as the overlap of two many-body shell-
model wave functions, corresponding to the initial nucleus (A) and the emerging
core (A-1) in the case of nucleon-knockout. Computation of the spectroscopic fac-
tors requires a shell model calculations, the reader can find further information on
the shell model in almost any nuclear physics text book. This subject has also been
treated in the Euroschool notes by H. Grawe [69] and T. Otsuka [70]. Different
codes are available on-line [71–73] and can be used for simple computations.

When using C2S to weight the single-particle cross-sections, C2S are interpreted
as the intensity related to the core state (ΦA−1), and thus as the pre-existing weight
of a given component (|core〉 ⊗ |nucleon〉) in the incident projectile ground state
wave function (ΦA).

The comparison of the theoretical cross-section, including C2S, and the mea-
surement would also allow to determine the factor S (also named RS ), interpreted
as an experimental spectroscopic factor.

σexp = Sσtheo (5.7)

In a typical knockout experiment, the measurement of the remaining fragment
momentum distribution, allows for the determination of the angular orbital momen-
tum l of the removed nucleon. Taking the “adiabatic approximation” and keeping
in mind the momentum conservation, the momentum of the recoil fragment after
one-nucleon removal provides a measurement of the momentum of the removed nu-
cleon. In the centre of mass system both quantities have equal modulus and opposite
directions.

The shape of the momentum distribution is related to the Fourier transform of the
radial wave function. It is also well known that the spatial extension of this radial
wave function could be very different depending on the orbital angular momentum.
In general, a lower orbital angular momentum yields a very extended spatial ex-
tension and thus a narrow momentum distribution. Figure 5.3 shows the example
of radial wave functions associated with different l values and the corresponding
momentum distributions applied to the 17O example.

We can conclude that the shape of the residual fragment momentum distribution
is dependent upon the orbital angular momentum components of the removed nu-
cleon. The comparison of the experimental and evaluated momentum distribution
thus allows the discrimination of the l of the knockout nucleon. This signature is
analogue to the one extracted from the angular distributions in transfer reactions.
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Fig. 5.3 Calculations performed for 17O (|16O〉 ⊗ |n〉). Left: Radial wave function for neutrons
with different orbital angular momenta (s1/2 represented by the dashed line and d5/2 with solid
line, in both cases Sn = 4.1 MeV). Right: Longitudinal momentum distribution of a remaining
fragment after one-neutron knockout (16O) associated with the two radial wave functions shown
in the left panel [68]

One must remember that the independent-particle shell model relies on the as-
sumption that each nucleon moves independently of the rest of nucleons in a nu-
cleus. Indeed, they are not free nucleons, but subject to the action of an average
potential (mean-field) induced by the neighbouring nucleons. In the nuclear shell
model picture deeply-bound states are seen as fully occupied by nucleons. At the
Fermi energy level (and above), configuration mixing can lead to reduced occupan-
cies that gradually decrease to zero. The evaluation of S (RS ), and its deviation
from unity, can be understood as a possible quantification of different correlation
effects that are beyond the effective interactions used in the shell-model to “build”
the mean-field. These kind of effects have been known for many years, observed
from data of electron induced (e, e′p) quasi-free scattering using stable beams with
A ranging from 7 to 208, which probed the structure using knockout in both va-
lence and deeply bound orbits (see [5] and Fig. 5.4). They show an average S value
on 0.6–0.7. These data on stable nuclei can be completed with other coming from
nucleon knockout of exotic projectiles (presented in detail in Sect. 5.2.3.5).

It is also worth to mention the efforts to evaluate spectroscopic factors with so-
phisticated calculations based on ab-initio methods which incorporate two-and three
body interactions [74–78]. These calculations are only possible for the case of light
nuclei.

5.2.2 Experimental Needs and Relevant Observables

The success of the nucleon knockout technique relies on two main premises:
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Fig. 5.4 The (e, e′p) data for
quasi-free scattering of
valence and deeply bound
orbits in nuclei gives
experimental spectroscopic
factors that are 60–70 % of
the mean field predictions [5].
Figure extracted from [5]

(a) the use of high-energy secondary beams in conjunction with thick targets pro-
vides an efficient enhancement of the reaction yields. Reactions at high energy
present an additional advantage of emitting the reaction products in a forward
focused cone, offering a rather high efficiency with moderate size detectors.

(b) a detection system able to select the reaction channel and ensure a kinematically
complete measurement (i.e.: identification and tracking of projectiles and core-
fragments, high precision measurement of the core-fragment momentum and
discrimination of the different possible core-fragment excited states).

Currently, high-energy secondary beams are produced by projectile fragmen-
tation of stable beams that are generated by heavy ion accelerators such as syn-
chrotrons and cyclotrons. Projectile fragmentation results in a cocktail beam com-
posed of the various fragments produced. The intensity of the secondary beams must
be sufficient to guarantee the success of the experiment: a minimum intensity of a
few particles per second is necessary to perform inclusive exploratory investigations.
This intensity will depend on different factors. The most important are:

– the type of accelerator used: cyclotrons generally provide higher intensities than
synchrotrons. At the time of writing, the largest secondary beam intensities are
achieved in RIBF [40, 41] (Japan). An important intensity upgrade is expected
with the arrival of the new FAIR16 [79] (Germany) and FRIB17 [80] (USA) facil-
ities in the future.

– the choice of projectile: the closer the primary projectile and the secondary beams
are in A and Z, the higher the production cross section.

16Facility for antiproton and ion research.
17Facility for rare isotope beams.
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– the target thickness: working at high energies makes it possible to use relatively
thick targets, which have a larger number of atoms and thus a greater secondary
particle yield.

Many knockout experiments rely on the use of very powerful magnetic spec-
trometers. These devices are composed of a set of electric and magnetic elements
that guarantee optimum transport of secondary projectiles and emerging fragments.
Electromagnetic spectrometers also act as filters allowing unambiguous identifica-
tion of secondary fragments from amongst all the species produced following frag-
mentation of the projectile. They are equipped with various detectors to ensure iden-
tification and tracking of ions traversing the system on an event-by-event basis. Last
but not least, spectrometers provide a very accurate determination of the momentum
of the nuclei from the accurate measurement of the position distribution. Interested
readers will find further details on these topics in Refs. [11, 81, 82].

Using knockout, the observables that provide experimental access to the ex-
otic projectile wave function are the momentum distribution of the surviving core-
fragments following nucleon knockout and the cross section associated with this
reaction channel. The longitudinal momentum distribution of the core-fragment pro-
vides information about the wave function of the removed nucleon, whereas spec-
troscopic factors (C2S) determined from the removal cross sections to each (n, l, j)
state, represent the occupancies of the subshell orbitals in the model space consid-
ered for each state. Gamma de-excitation of the core-fragment can also be measured
with gamma detection arrays. The coincident detection of core-fragment momentum
distribution and removal cross-section with gamma-rays provides information on
each individual contribution to the exotic projectile wave function. As a general rule,
the removed nucleon is not detected. Only some experiments have concentrated on
the detection of the removed nucleon allowing the experimental determination of the
cross-section for each reaction mechanism (diffraction and stripping) and validating
the reaction models so far used. In the rest of cases, direct discrimination of the
removal mechanism is not possible and is taken into account by the reaction model.

Figure 5.5 shows a schematic view of the generic experimental setup at the FR-
ragment Separator (FRS) at GSI [83]. The determination of all the observables in-
troduced in this section is referred to in this example. Other devices extensively
used to perform measurements of this kind are the A1900/S800 spectrograph at
NSCL/MSU [84], the BigRIPS at RIBF/RIKEN [39, 40] and the SPEG energy loss
spectrometer at GANIL [85].

The first section of the spectrometer is tuned to separate from the primary beam
and transport the nucleus of interest to where the beam is focused at the intermediate
image plane. Here a target is placed, where the knockout reaction is induced. Other
fragmentation products within the spectrometer acceptance will be transported as
well (as shown in the left panel of Fig. 5.6). The spectrometer section behind the
knockout target is then tuned to the magnetic rigidity of the A−1X fragments pro-
duced in the one-nucleon knockout reaction (right panel of Fig. 5.6).

It is essential to ensure an unambiguous selection of the reaction channel. This is
achieved via the double identification of the exotic projectile in front of the knockout
target and the remaining core-fragment following the reaction. Figure 5.6 illustrates
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Fig. 5.5 A schematic view of the FRagment Separator (FRS) with its detection set-up. Complete
identification with ToF (SC) and energy-deposition (IC) measurements is possible in both sections
of the spectrometer. Several position sensitive detectors (TPC) provide projectile and fragment
tracking as well as the measurement of fragment momentum distributions. A γ detector (NaI)
provides the coincident measurement of fragments with prompt γ -ray deexcitation

a particular case corresponding to the 40Ar fragmentation at 1 GeV/nucleon per-
formed at the FRS. The first section of the spectrometer was tuned to select 20O
fragments (right panel), whereas the second section was tuned to select 19O frag-
ments emerging from one-neutron knockout reactions on a carbon target. In this
particular measurement, identification was achieved by determining the A/Z ratio
from Time of Flight (ToF) measurements with plastic scintillators, and energy losses
(∝Z2) recorded by ionisation chambers.

As it was mentioned earlier, in the “adiabatic” approximation, the momentum of
the core-fragment following one-nucleon removal provides information on the wave
function of the removed nucleon. Narrow momentum distributions have been asso-
ciated with a large spatial extension of the removed nucleon (associated with low
angular momentum).18 This was clearly observed in experiments with halo nuclei
that will be presented in detail later in this lecture (Sect. 5.2.3.1). The core-fragment
momentum is determined by measuring the velocity shift induced by the knock-
out target. To determine this velocity shift, position sensitive detectors measure the
position distribution of the one-nucleon removal residue at the final focal plane.

It is important to keep in mind that the experimental determination of core-
fragment momentum distributions requires high-resolution measurements. The most
stringent cases would correspond to the narrow momentum distributions of halo nu-

18The FWHM of the momentum distribution due to knockout is around 50 MeV/c for an s (l = 0)
neutron, and around 300 MeV/c for a d (l = 2) neutron.
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Fig. 5.6 Identification of different secondary beams (left) and the corresponding one-neutron re-
moval core-fragments (right) emerging after one-neutron knockout on a carbon target. This cock-
tail beam was obtained by fragmentation of 40Ar at 1 GeV/nucleon impinging on a Be target [48]

clei (see Sect. 5.2.3.1), where a single-particle hole yields a FWHM of the order of
50–80 MeV/c in the core-fragment momentum distribution.

Position distribution measurements are possible in the transversal beam direc-
tions. These quantities make it possible to determine the longitudinal (parallel) and
transverse (perpendicular) contributions with respect to the beam direction of the
core-fragment momentum distribution. Both projections should contain the same
information but the longitudinal distribution is preferred because it is less affected
by Coulomb diffraction and diffractive scattering mechanisms.

From now on, core-fragments momentum distributions will always refer to the
longitudinal component. The experimental determination of the core-fragment mo-
mentum distribution is measured in the laboratory reference system and then trans-
formed to the projectile frame using the corresponding Lorentz transformation.

The final core-fragment momentum resolution depends not only on the track-
ing and magnetic resolving power but also on the quality of the projectile beam
(spot size and angular alignment) and the amount of matter at the mid-plane (angu-
lar energy straggling). Most of these contributions can be experimentally evaluated
by measuring the momentum distribution of the projectile (without knockout tar-
get) [45, 86], which can be used for deconvolution (FWHM reported in the literature
are always corrected by this value). Figure 5.7 shows these effects for the case of
19C at 910 MeV/nucleon. Another possibility to get free of the effects non due to the
knockout reaction on the momentum distribution would consist on the determina-
tion of the projectile incoming angle that could be subtracted on an event-by-event
basis, to obtain a corrected outgoing angle for the emerging fragment.

The left panel in Fig. 5.8 shows core-fragment momentum distributions of dif-
ferent carbon projectiles, at almost 1 GeV/nucleon, following one-neutron knockout
ranging from the bound nucleus 12C with a FWHM of 220±12 MeV/c to the loosely
bound nucleus 19C with a FWHM of 71± 3 MeV/c. These experimental results re-
veal the different initial state of the removed neutron, and indicate the dominance of
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Fig. 5.7 Measured longitudinal momentum distribution of 18C fragments from one-neutron
knockout of 19C at 910 MeV/nucleon on a carbon target (points). The dashed profile represents
the measured system resolution with a width of 19.9 MeV/c [86]

Fig. 5.8 Longitudinal
momentum distributions of
different carbon fragments, at
≈910 MeV/nucleon,
emerging from one-neutron
knockout reactions,
normalised to the unit (left)
and to the measured removal
cross-sections. Data taken
from [45, 86]

s-wave occupancy in the ground state configuration for the one-neutron halo nuclei
19C [45].

The one-nucleon removal cross section is deduced from the ratio between the
number of incoming exotic projectiles and the number of knockout residues. This
last quantity is determined at the final focal plane of the spectrometer and must be
corrected for the corresponding fragment transmission in the spectrometer region
between the knockout target and the detection point. This transmission is evalu-
ated by means of simulation programs that account for the ion-optical transport of
the nuclei through the spectrometer (i.e.: LISE [87], MOCADI [88]). Other correc-
tions, such as secondary reactions in the knockout target, detector efficiency and
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Fig. 5.9 Doppler shift and Doppler broadening for gamma-rays emitted by relativistic sources at
different energies (curves generated for detectors with angular segments of about four degrees)

data acquisition dead time are also considered. The right panel of Fig. 5.8 shows
the measured momentum distributions for the different C isotopes, normalized to
the corresponding cross sections. These two observables, core-fragment momentum
distribution and nucleon removal cross section, are determined independently.

For exclusive measurements of these observables for the bound excited states, the
experimental setup must provide information on core-fragment de-excitation after
knockout. The most common method for distinguishing the different core-fragment
configurations contributing to the exotic nuclei wave function, requiring to differ-
entiate between core-fragment in the ground state and in excited states, is via the
coincident detection of the surviving core-fragment with a gamma ray emitted in
the de-excitation process. Therefore, the gamma-ray detector must be located near
the knockout target. Different gamma detector arrays are used. The first experiments
were performed with scintillation-based detectors (namely NaI(Tl) and CsI(Tl))
with moderate intrinsic energy resolution. These have been gradually replaced by
Ge detectors which have an excellent intrinsic energy resolution, but considerably
smaller efficiency in detecting high energy gamma-rays.

The recorded gamma-ray spectra, emitted by relativistic sources would be subject
to the Doppler effect (shift and broadening). The Doppler shift represents the gamma
energy transformation between the laboratory and centre of mass reference systems.
The left panel in Fig. 5.9 shows the evolution of the Doppler shift with the polar an-
gle. For the forward angles (θ < 40 degrees), this effect significantly increases the
energy in the laboratory system, which results in lower gamma-detection efficiency
(the detection efficiency of a gamma detector depends on the gamma energy, the
higher the gamma energy the lower the efficiency). Doppler broadening reflects the
effect of the angular aperture of the gamma detector in the final energy resolution
of the system. The right panel of Fig. 5.9 shows the evolution of this effect with the
polar angle (for a given detector angular aperture). The energy resolutions shown in
this picture are calculated without considering the intrinsic energy resolution of the
gamma detector used. We can also see (in Fig. 5.9) that the Doppler shift and broad-
ening become more pronounced as the energy of the emitter increases. The Doppler
shift can be corrected by determining the velocity of the emitter and the gamma-
ray emission angle. However, the broadening effect is determined by the velocity
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Fig. 5.10 Gamma rays recorded from the 47Ca core-fragment de-excitation following the reaction
9Be(48Ca, 47Ca + γ )X at around 500 MeV/nucleon. Data recorded with MINIBALL Ge array in
the intermediate focal plane of the FRS [90]

of the emitter and the detector angular aperture, and cannot be corrected. The final
energy resolution will be dominated by this kinematic broadening. Thus, detector
segmentation becomes a key factor, the finer the segmentation the better the energy
resolution. These “weak” points, i.e.: small efficiency for energetic gamma-rays and
finite angular segmentation, limit the performance of gamma arrays, particularly at
high-energies, and constitute difficult challenges in the determination of exclusive
observables.

Figure 5.10 shows an example of a gamma energy spectra recorded with the
MINIBALL [89] Ge array in the intermediate focal plane of the FRS. The experi-
ment aimed to probe the single particle properties around 54Ca [90] (47Ca depicted
here was used as the reference case), where a shell closure effect for N = 34 (Z =
20) was predicted [91]. In this case, the emitter energy was ≈500 MeV/nucleon
(β ≈ 0.76). We can observe in this figure that the energy resolution achieved for the
peak ≈570 keV is around a few percent. This energy resolution is considered a good
result for in-beam gamma ray spectroscopy for relativistic moving sources, but it is
nowhere near the intrinsic energy resolution of these Ge detectors (well below 1 %).
Another example of γ -detection with segmented Ge detectors is shown in Fig. 5.17
for a moving source at 80 MeV/nucleon.

The detection of gamma-rays at very high energies (500–700 MeV/nucleon)
remains a critical issue that will improve in the near future with the construc-
tion of dedicated detectors. Special mention deserves CALIFA [92], a spectrom-
eter/calorimeter under construction for the R3B/FAIR [93] experiment. CALIFA,
with more than 3000 detection units, based on highly performant CsI(Tl) crys-
tals read-out by Large Area Avalanche Photo Diodes,19 will reduce the impact
of Doppler broadening on the final energy resolution, providing �E/E ≈ 5 % at
1 MeV (β ≈ 0.7) and an overall photo-peak efficiency of 40 % for γ rays up to
15 MeV (in the projectile frame).

Experiments addressing the detection of the knockout nucleons have not been
so numerous. They are however very interesting to discriminate between different

19Option adopted for the backward angles of CALIFA.
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reaction mechanisms. Among these exclusive experiments, some have concentrated
on the detection of the diffractive component [38, 42, 94–96].

Special mention is due to the work of Bazin and collaborators [67] who reported
a detailed study of the relative importance of the stripping and diffraction mecha-
nisms involved in the one proton removal reaction, using a coincident measurement
of residue and knockout proton. In typical knockout experiments, the removed nu-
cleon is not detected and the reaction theory is used to estimate the relative weight
of elastic and inelastic removal mechanism. Later these contributions are summed
up and compared with the experimental result. The validation of the reaction mech-
anisms requires exclusive measurements detecting both momenta, one associated
with the heavy residue and the other to the removed nucleon. This was successfully
achieved in the one-proton knockout of 9C and 8B on a Be target at an incident en-
ergy of ≈150 A MeV [67]. The reactions took place in the scattering chamber of the
A1900/S800 [84] spectrograph. This apparatus was also used to collect and identify
the one-proton fragments around zero degrees, whereas the light particles emerg-
ing at large angles were measured with the HiRA [97]20 detector array (a telescope
consisting in two layers of Si and CsI). The relative contribution of both reaction
mechanisms was deduced from the energy sum spectra of both heavy and light frag-
ments in coincidence (see Fig. 5.11) and showed an excellent agreement with the
values predicted by the eikonal model, giving confidence for the correctness of us-
ing knockout reactions as tool to determine single-particle spectroscopic strengths
in exotic nuclei.

5.2.3 Results of Knockout Measurements

Knockout experiments employing inverse kinematics started in the early 90’s. The
first experiments were relatively simple and consisted of the single detection of the
emerging A-1 fragment. These kind of experiments were called “inclusive” and
could not distinguish neither the post-reaction fragment excitation nor the contri-
butions due to stripping or diffraction. Soon it became evident that detailed studies
were required and the coincident gamma de-excitation of the fragment began to
be present for almost any knockout experiment. The discrimination on the reaction
mechanism relied on the description of the reaction theory and only few experiments
concentrate on the detection of the knockout nucleon. Both cases, the coincident de-
tection of the fragment gamma de-excitation and the detection of the knocked out
nucleon constitute what we know as “exclusive” measurements.

In some cases, by profiting from cocktails beams it was possible to study many
different species simultaneously. Figure 5.12, shows results [98] obtained at the
FRS(GSI), of inclusive momentum distributions of residual nuclei after one-neutron
knockout, superimposed upon a chart of the nuclides. In this picture, the vertical axis

20HIgh resolution array.
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Fig. 5.11 Energy sum
spectra of one-proton
knockout for 9C (upper
panel) and 8B (bottom panel).
The inelastic and elastic
components of the fit are used
to evaluate the exclusive
contributions [67]

corresponds to the Z number and the horizontal axis to the N number of the exotic
projectile before fragmentation. Several neutron-rich isotopes could be investigated
in a single experiment where a cocktail secondary beam was produced by nuclear
fragmentation of 40Ar at 700 MeV/nucleon. Though qualitative, the evolution of the
momentum distribution in this figure reflects the structural changes encountered by
nuclei approaching the dripline. For example one can observe the narrowness of the
distribution for well known “halo states” such as 19C, or the N = 14 sub-shell effect
(22N, 23O, 24F, 25Ne, . . . ). This figure also reveals the potential of this technique
to perform exploratory investigations, as indicated by Sauvan et al. [35, 36]. The
information provided by the ensemble of data obtained, in different facilities and at
different energetic domains over the last 25 years is quite coherent.

In the following sections we present a selection of different experimental works
that provide the reader with a picture of the progress achieved so far. They are or-
ganised in different subsections which highlight different subjects of interest. The
limitations and difficulties encountered will be also commented.
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Fig. 5.12 Inclusive longitudinal momentum distributions of the A-1 fragments after one-neutron
removal from the various projectiles indicated on top of a chart of nuclides. Black squares corre-
spond to stable isotopes. The measurements were performed at GSI using beam energies around
700 MeV/nucleon [98]

5.2.3.1 Study and Characterisation of Halo States

Near the neutron dripline the large neutron excess and the small neutron binding
energy can lead to unexpected changes in the nuclear structure. Through the years,
special attention has been given to the case of nuclear halo states. When approaching
the driplines the separation energy of the last nucleon, or pair of nucleons, decreases
gradually and the bound nuclear states come close to the continuum. In some cases,
the combination of the short range of the nuclear force and the low separation energy
of the valence nucleons results in considerable tunnelling into the classical forbid-
den region and a more or less pronounced halo may be formed. A halo nucleus
can be visualized as an inert core surrounded by a low density halo of valence nu-
cleon(s) [99–101]. The formation of halo states is especially characteristic for light
nuclei in the dripline regions, although not all of these can form a halo.

Analysis and interpretation of knockout experiments dedicated to the study of
“halos” has undoubtedly led to a better understanding of the knockout technique
and its development and application as a powerful spectroscopic tool. In earlier
experiments, the experimental signatures of these phenomena were the narrow mo-
mentum distribution of the emerging fragments after one-neutron knockout, reflect-
ing the large spatial extension of the removed nucleon, and the large one-neutron
removal cross sections that constitute a complementary source for structure infor-
mation (see [99] for a detailed compilation). These first experiments relied uniquely
on the detection of the core-fragments and are known as “inclusive” measurements.
However, we should not forget that the nuclei under study are located far away
from the beta-stability line and that the resulting core-fragments are exotic nuclei
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themselves. As a result, core-polarisation effects are quite common. Indeed, soon
it became evident that a non-negligible fraction of the measured neutron-removal
cross section was populating excited states in the residue. This meant that the ob-
served longitudinal momentum distributions were in reality the superposition of
broad components associated with core-fragment excited states onto the narrow dis-
tribution associated with the halo states (mainly in the core-fragment ground state).

The use of gamma-ray coincidence, mentioned earlier, made it possible to sep-
arate these different contributions which in turn made it possible to determine the
partial cross-sections of the different core states. The observables extracted under
these conditions are referred to as “exclusive”. This exclusive experimental infor-
mation, together with an adequate model describing both the structure of the nuclei
involved and the reaction mechanism, allows for the experimental determination of
spectroscopic factors. This coincidence technique is not exempt from experimental
problems. Cases involving nuclei with complex decay schemes, and/or with many
weak transitions would be associated with larger experimental errors that would
make a detailed analysis difficult or impossible. However, as in the case of “halos”,
nuclei close to the driplines exhibit very few bound states making this determination
easier.

In the following paragraphs, we will concentrate on the description of two well-
known cases, 11Be and 8B, which correspond to one-neutron and one-proton halo
states, respectively.

• One-neutron halo 11Be
Our first example is 11Be with only three bound excited states and a one-

neutron separation energy of ∼500 keV. The ground state of 11Be, considered as
a 1/2+ intruder from the sd shell, is a well known one-neutron halo state. First
experimental evidences of it came from the measurement of the half-life of the
320 keV excited state of 11Be, suggesting an extremely strong E1 transition [102],
and the narrow momentum distribution of 10Be core-fragments resulting after
one-neutron knockout of 11Be [103]. The initial picture of an inert 10Be core
and a neutron in a 1s shell, soon gave way to a more complex picture where the
pertinence of this inert core was questioned.

The most favourable scenario consisted of an admixture of a neutron in a 0d5/2

orbital coupled to the first excited state in 10Be (2+), but theoretical predictions
ranged in their estimates from 7 % to 40 % [104, 105]. The experimental situation
was ambiguous, with different results from 10Be(d,p)11Be experiments provid-
ing quite different spectroscopic factors [106–108], some of them incompatible
with earlier Coulomb dissociation experiments [109, 110]. The knockout experi-
ment performed by T. Aumann et al. [111] at NSCL (A1900/S800) shed light on
this question. They produced a secondary beam of 11Be at 60 MeV/nucleon via
nuclear fragmentation of 16O. The 11Be beam impinged on a Be target produc-
ing the one-neutron knockout. A NaI(Tl) array located around the removal target
recorded the gamma-rays in coincidence with the 10Be fragments, which were
analysed with the tracking detectors located at the end of A1900/S800 [84] (see
experimental details in [111]). The resulting gamma-energy spectrum is displayed
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Fig. 5.13 Left: Doppler-corrected gamma energy spectrum measured with the NaI array in coinci-
dence with 10Be core-fragments emerging from the 9Be(11Be, 10Be+ γ )X one-neutron knockout.
Right: Longitudinal momentum distribution of the 10Be ground state fragments. The curves are
calculations assuming a knockout reaction from s, p, and d states [111]. Pictures taken from [111]

Table 5.1 Partial cross sections (mb) to all final states Iπ observed in 10Be after one-neutron
knockout from 12Be. Different contributions of theoretical single-particle cross sections in the
eikonal model are reported. The sum multiplied by the spectroscopic factor is compared with the
experimental values [111]

Iπ l C2S σknocksp σ
diff
sp σ other σ theo σ expt

0+ 0 0.74 125 98 10 172 203(31)

2+ 2 0.18 36 14 11 11 16(4)

1− 1 0.69 25 9 23 17(4)

2+ 1 0.58 25 9 20 23(6)

Σ 226 259(39)

in the left panel of Fig. 5.13, where the solid line represents a fit to the experi-
mental spectrum. The different grey lines correspond to a Monte Carlo simulation
of the individual decay channels. The gamma-rays facilitated the experimental
determination of partial cross-sections that are summarised in Table 5.1. The cal-
culations shown in this table correspond to single-particle cross sections in the
spectator-core eikonal three-body model. They are given separately for stripping
and diffractive breakup. The theoretical cross-section for a given 10Be core final
state and the j value of the removed nucleon is assumed to be the product of a
spectroscopic factor (C2S) [112] and a single-particle cross section, which is the
sum of the different contributions mentioned above. This theoretical cross sec-
tion is then compared with the experimental values, allowing us to test the picture
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provided by the reaction mechanism description and the nuclear structure (spec-
troscopic factors calculated within the shell model). Data recorded in Table 5.1
show a quite good agreement between the experimental results and theoretical
calculations. This result also corroborates a dominance of an s-wave single parti-
cle configuration for the ground-state.

With this experimental setup, it was possible to discriminate the ground-state
from the other excited states for the 10Be fragment momentum distribution. The
results are shown in the right panel of Fig. 5.13, together with calculations as-
suming a knockout reaction from s, p and d neutrons. Here we see that the
narrow momentum distribution (FWHM = 47.7(6) MeV/c), associated with the
10Be g.s., is only compatible with the case of nucleon removal from a 1s state.
This experiment was very successful in determining the ground state structure of
11Be, quantifying the admixture of the 10Be excited core to it. It provided a good
understanding of the reaction mechanism and structure of the nuclei involved.

• One-proton halo 8B
8B with one bound state and a one-proton separation energy of 137 keV, is the

only known nucleus with a proton halo structure in its ground state. Experimental
evidence for it was seen in earlier measurements of a large one-proton removal
cross section of 98 ± 6 mb (on carbon) and a narrow longitudinal momentum
distribution of 93± 5 MeV/c [113–115].

Because it is an A= 8 nucleus, reactions involving 8B are important to under-
stand how stellar nucleosynthesis bridges the A= 8 mass gap. In addition, the as-
trophysical interest in 8B stems from its key role in the production of high-energy
solar neutrinos [116]. The need for accuracy in the high-energy solar neutrinos
production has not diminished after the reports on neutrino oscillations [117].
Indeed, the proton capture rate of 7Be strongly depends on the structure of 8B.

When describing 8B as a one-proton halo system, one should keep in mind that
the 7Be core is itself a weakly bound system, which can be considered as a two-
body system (4He + 3He). The 7Be 3/2− ground state is bound by 1.587 MeV,
and the only bound state below the α+ 3He threshold is the 1/2− state at 429 keV
excitation energy. If 8B is treated as a two-body system, there are three possible
ways to couple a proton to the 7Be core: the last proton in 8B can be in either a
p3/2 or a p1/2 state, and the possible ground state configurations of 8B(Iπ = 2+)
thus are:

(a) ψ(7Be(3/2−))⊗ψ(p(3/2−))
(b) ψ(7Be(3/2−))⊗ψ(p(1/2−))
(c) ψ(7Be(1/2−))⊗ψ(p(3/2−))
An experiment was performed at the FRS (GSI) [46, 47] with a 8B beam at
936 MeV/nucleon, produced by nuclear fragmentation of a 12C primary beam.
This 8B beam impinged on a C target located at the intermediate focal plane of
the FRS. Fragment longitudinal momentum distributions after proton knockout
and the cross-sections of the processes were determined in the experiment. An
array of NaI(Tl) detectors, located close to the knockout target and covering the
forward direction, allowed the coincident measurement of the 429 keV γ rays.
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Fig. 5.14 Left: Energy spectrum of γ rays after Doppler correction in coincidence with 7Be frag-
ments after one-proton removal reactions of 8B in a carbon target. Right: (top) Inclusive and
(bottom) exclusive p‖ momentum distribution of 7Be core-fragments emerging from the 12C(8B,
7Be + γ )X one-proton knockout. Exclusive data refer to contributions in coincidence with the
429 keV state in 7Be. In both cases, the full curve represents the theoretical calculation folded
with the experimental resolution and scaled to match the amplitude of the experimental spec-
trum [46, 47]

Table 5.2 Comparison between theoretical and experimental results for inclusive (total) and ex-
cited (in coincidence with the γ -peak at 429 keV in 7Be) one-proton removal cross sections and
p‖ (FWHM) after one proton removal of 8B. The theoretical widths in this table include the exper-
imental resolution

σ−1p (mb)
exp.

σ−1p (mb)
theo.

p‖ (MeV/c)
exp.

p‖ (MeV/c)
theo.

Total 94± 9 82 95± 5 99

Excited 12± 3 11.5 109± 7 130

Tracking detectors located at the final focal plane determined the momentum dis-
tribution of the 7Be fragments after one-proton removal process of 8B. This co-
incidence measurement provided direct information about the contribution from
configuration (c) to the 8B ground state wave function.

The gamma-rays recorded in the experiment are presented in the left panel
of Fig. 5.14. A summary of the experimental results achieved is also shown in
Table 5.2. The theoretical values were obtained using the eikonal approximation
with a three body model (4He + 3He + t) to describe the 8B wave function. The
gamma coincidence also allowed to discriminate the fragment longitudinal dis-
tribution involving configuration (c) from the others. In this case the removed
protons are always in a p state as shown in the right panel of Fig. 5.14, and al-
most no difference in the fragment momentum distribution width is observed.

The ratio of the cross section of 7Be in its excited state to the total cross section
is found to be 13±3 % which is in excellent agreement with the theoretical value
of 14 %. This indicates that the ψ(7Be(1/2−))⊗ψ(p(3/2−)) component in the
8B ground state wave function has a significant weight of about 16 %. The ratio
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Fig. 5.15 The nuclear chart
showing the region of light
nuclei where different shell
changes have been identified
following empirical
systematics of nuclear
properties [120, 121]. Figure
extracted from [120]

between the experimental and theoretical cross section indicates how realistic is
the “prescription” used in the model. This will be explained later in Sect. 5.2.3.5.

5.2.3.2 Excursion to Nuclear Shells

Since the early work of Goeppert-Mayer and Jensen [12, 13, 118, 119], a descrip-
tion of the nucleus as formed by nucleons under the action of a central potential
plus a spin-orbit interaction was accepted. The energy ordering of nucleons in nu-
clei showed important gaps at given nucleon numbers, pointing to the existence of
“closed shells”, where the maximum occupancy of the shell is reached. These nu-
cleon numbers are known as “magic numbers” and provide extra stability to the
nuclear system. The finding of magic numbers has been later confirmed by the pres-
ence of discontinuities associated with them, and observed in the systematic study
of several nuclear properties, such as the evolution of the B(E2) strength.

This idea has been, and still is today, the robust pillar on which the shell model
stands to explain the nuclear properties. The important technological improvements,
achieved during the 60 years elapsed, have brought the opportunity of increasing the
number of nuclei accessible for experiments.

Present nuclear studies concentrate on the investigation of species far away from
the β-stability valley, characterized by the imbalanced number of protons and neu-
trons they own. The manifestation of new phenomena such as the nuclear halo dis-
cussed in Sect. 5.2.3.1 has been observed in some nuclei. As a general feature, un-
expected structural properties result from a rearrangement of the nuclear orbitals,
manifested in some of the exotic species studied.

This rearrangement has resulted in a modification of the traditional magic num-
bers [120] that we will address in this section and which is summarized in Fig. 5.15.
A detailed review of these topics can be found in [120, 121].

To understand the importance of these modifications it is necessary to establish
the connection between possible deviations from the expected picture, based on our
knowledge of stable nuclei, and a more microscopical interpretation. From this point
of view, a major contribution of isospin dependent terms in the nucleon-nucleon
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interaction could be reasonable and is today accepted [122–125] (and references
therein). The need to include terms in the nuclear interaction corresponding to three-
nucleon force contributions [75, 126, 127] has become obvious.

We will highlight some nucleon-knockout experiments that have contributed to
the study of shell evolution close to the nuclear driplines. Again, the discussion will
be restricted to the lower part of the nuclear chart.

Several experimental findings pointed to the vanishing of N = 8 magic num-
ber. Many experiments have addressed the study of 11Li, starting with the inter-
action cross-section measurements [23] and followed by neutron knockout exper-
iments [25, 128] and transfer reaction studies [129]. In a traditional shell-model
picture 11Li would have the valence neutron in the 1p1/2 orbital, but measurements
evidenced a mixing probability of neutrons in the 1p1/2 but also in the 2s1/2 orbital.
In the same direction, the study of the one-neutron knockout from 11Be [111] (see
Sect. 5.2.3.1) showed a major residence of neutrons in the 2s1/2 orbital. Other ex-
periments, such as neutron transfer [130], Coulomb dissociation [42] and measure-
ments of the magnetic moment [131] yielded similar conclusions: the breakdown of
the shell gap at N = 8 with the presence of the intruder 2s1/2 orbital into the p-shell.
The other example showed in Sect. 5.2.3.1, the one-proton knockout from 8B [46],
was used to explore whether a similar behaviour is present in the Z = 8 shell. In
this case, the location of the proton halo in the usual p3/2 orbital was confirmed and
thus no shell change related.

A very intense experimental activity has concentrated on theN = 20 shell region.
The oxygen isotopic chain ending at 24O, with the non-observation of 28O and 26O
as bound states suggested the vanishing of the N = 20 in this region. Many stud-
ies have addressed the identification and characterization of the so called “island
of inversion” formed by nuclei whose ground states exhibit configuration mixing
across the N = 20 shell. This weakening of the N = 20 shell was experimentally
supported by the systematic measurements of B(E2) values for different Mg iso-
topes (30–32Mg) related with the lowering of the 2+ excitation energies. Another
exhaustive work was that of the one-neutron knockout of 28Ne [132] which will be
described later in this lecture (see Sect. 5.2.3.3). The conclusion of this work identi-
fied the presence of fp-intruder orbitals in the ground state of 28Ne. Along the same
lines, one could also mention the one-neutron knockout of 30Mg and 32Mg [133],
where the ground states show mixing configurations of 1f7/2 (dominating) and
2p3/2 orbitals and the one-neutron knockout of the very n-rich 33Mg [50], which
reveals in the ground state a mixing of 1f7/2, 2p3/2 and 1d3/2, with the intruder
2p3/2 contribution being quite significant.

Complementary manifestation of this shell evolution is the appearance of new
shell gaps. A nice example is the observed shift of the N = 20 shell towards N = 16
for the case of light n-rich nuclei. The one-neutron knockout from the last bound
oxygen isotope 24O [49] was studied at the FRS. The measured inclusive momentum
distribution (see Fig. 5.16) showed a clear evidence of 2s1/2 neutron occupation. The
experimental determination of the associated spectroscopic factor is 1.74(19) and is
compared in Table 5.3 with theoretical spectroscopic factors evaluated within the
shell model using different effective interactions (SDPF-M and USDB). This large
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Table 5.3 Spectroscopic factors for the 2s1/2 orbital following one-neutron removal from 24O.
The experimental value is compared with those determined using the SDPF-M and the USDB in-
teractions. The experimental spectroscopic factor is obtained from a best fit of the 23O momentum
distribution (see Fig. 5.16)

SDPF-M
C2S

USDB
C2S

ExpS
C2S

1/2g.s. 1.769 1.810 1.74
(19)

Fig. 5.16 Longitudinal
momentum distribution after
one-neutron removal from
24O. The solid curves
correspond to the eikonal
model for neutron knockout
from 2s1/2 in red, and 1d5/2
in blue [49]. Figure extracted
from [49]

spectroscopic factor implies a strong concentration of the single-particle strength of
the valence neutron in the 2s1/2 orbital, which indicates the existence of a large gap
between the 2s1/2 and the 1d3/2 orbitals, consistent with a new shell gap at N = 16.
This reveals 24O as a new doubly closed shell nucleus.

The experimental determination of the shell gap (≈4.8 MeV) has been possible
from the 2+ lowest resonance energy in 24O observed in the one-proton removal
from 26F to 23O+ n [134]. This result was also confirmed by Ref. [135], measuring
unbound excited states of 24O via proton inelastic scattering (24O(p,p′)23O + n
reaction) in inverse kinematics at a beam energy of 62 MeV/nucleon at RIPS. We
mention also interesting results on 22C two-neutron knockout [41] performed at
RIBF, that found a large spectroscopic factor of 1.403 for the 2s1/2 component in
order to explain the narrow momentum distribution measured which further supports
the N = 16 as a new magic number.

5.2.3.3 Benchmark of Nuclear Structure Models

The inherent complexity of quantifying structural properties (i.e.: the determination
of C2S) from the analysis of nucleon-removal reactions increases significantly as
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Fig. 5.17 Left: Doppler-reconstructed gamma-ray energy spectra for single neutron removal from
28Ne. Right: Bound states predicted for 27Ne by USD and SDPF-M calculations [132]. Figure
extracted from [132]

nuclei closer to the β-stability are addressed, involving the knockout of more bound
nucleons and increasing the amount of available final states.

However, it is important to stress that even in these complex cases the nucleon-
knockout technique has proven to be very useful in providing structural information.
An example is the neutron knockout of 28Ne [132]. This experiment was performed
at NSCL with a secondary beam of about 80 MeV/nucleon using SeGA [136],21 a
segmented Ge detector covering an angular range from 24◦ to 147◦. Figure 5.17,
left, shows three gamma-rays at 0.119 (inset Fig. 5.17 left), 0.765, and 0.885 MeV,
recorded from the 27Ne de-excitation. The 0.119 and 0.765 MeV gamma-rays were
found to be in coincidence, suggesting that only two excited states were populated,
as shown in the inset of this figure, and confirming the previous work [137].

The exclusive longitudinal momentum distributions were obtained by applying
the coincidence method. Both 27Ne excited states were associated with removed
neutrons with l = 0 or l = 1 but the large experimental errors did not allow a defini-
tive assignment. The momentum distribution of 27Ne ground sate was significantly
broader, but quantitative interpretation was not possible.

Figure 5.17, right, shows two different shell-model calculations for 27Ne. Both
interactions give very different predictions for the neutron-rich Ne isotopes, which
are located in a transitional region between N = 16 and N = 20 (discussed in
Sect. 5.2.3.2). Conventional calculations performed with the Universal SD (USD)
interaction with a limited configuration space, do not allow for intruder configura-
tions across the N = 20 gap, and thus fail to reproduce shell-breaking effects near
N = 20. SDPF-M calculations indicate that intruder configurations are important
for 27Ne (N = 17), even in the low-energy part of the level scheme. Conversely,
SDPF-M predictions in this transitional region also compare well with known level
structures and electromagnetic moments.

21Segmented germanium array.
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What is interesting here is that the 27Ne measured gamma rays show the presence
of low-lying states and are consistent with the SDPF-M shell model calculations.
This contradicts the USD shell model, which predicts only one bound excited state.

Further analysis in terms of exclusive cross-sections was also carried out by
the authors, who calculated single particle cross sections in the three-body reac-
tion model [138]. The ratio of experimental and single particle cross sections made
it possible to determine experimental spectroscopic factors. Spectroscopic factors
from the SDPF-M model were not yet available, providing only an upper limit,
which was however in quite good agreement with the experimental spectroscopic
factors.

This experiment reported direct evidence of population of the 3/2− intruder state
in 27Ne in the knockout of a single neutron from the ground state of 28Ne. There
are two important implications to this experimental finding; first, that this low-lying
negative parity state is consistent with a narrower shell gap for exotic nuclei with
Z� N and N ≈ 20; second, it clearly favoured Monte Carlo shell-model calcula-
tions with the modern SDPF-M interaction that successfully describe neutron-rich
nuclei in the vicinity of N = 20, where normal and intruder configurations coexist
at low excitation energy.

Another example can be found in the study of neutron-rich Ca, Ti and Cr nu-
clides around N = 32–35, where the GXPF1A interaction predicts a new doubly-
magic shell closure for the N = 34 nucleus 54Ca. This nucleus, can not be reached
experimentally yet, but some nuclei in the neighbourhood, like 55Ti [90], could be
explored. The one-neutron knockout from 56Ti using the FRS as a two-stage mag-
netic spectrometer and the Miniball [89] array for gamma-ray detection allowed the
determination of inclusive and exclusive cross sections and longitudinal momen-
tum distributions of 55Ti, providing later the determination of the orbital angular
momentum of the populated states. The measured data allowed for the first time to
establish the ground state of 55Ti as 1/2−, in agreement with shell model predictions
using the GXPF1A (carefully tested in the pf -shell region [91, 139]).

The same interaction showed a reasonable agreement, reproducing the inclusive
measurements of one-neutron knockout of 51–55Sc [54] for nucleons removed from
p orbitals. However, an important mismatch between the experimental and theoret-
ical cross-section was observed for the case of neutrons removed from f orbitals.
The authors explained the discrepancy suggesting a migration of the spectroscopic
strength of neutrons (in f7/2) across the N = 28 shell gap. Indeed, this shell reduc-
tion has been recently predicted in Ca isotones, by realistic NN interactions plus
three body interactions [127], highlighting possible shortcomings in the GXPF1 in-
teraction.

Consequently, these examples do not only demonstrate the general importance of
direct reactions and particularly nucleon-knockout for the study of exotic nuclei, but
can definitively be considered as excellent benchmark experiments for the predic-
tive power of large-scale shell-model calculations and an important tool to improve
them.
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Fig. 5.18 Energy diagram of
the neutron-rich N = 16
isotones (28Mg, 27Na, and
26Ne), illustrating that direct
population of the bound states
of 26Ne from 28Mg is
favoured over the two-step
process of one-proton
removal to excited 27Na
followed by proton
evaporation [140]. Figure
extracted from [140]

5.2.3.4 Two Nucleon Removal

The panorama of “direct reactions” induced by exotic beams was enlarged by Bazin
and collaborators [28], who suggested the two-proton removal of very neutron-rich
nuclei as a single step direct reaction.

It is based on the idea that the competing two-step process of a first proton-
knockout followed by a proton evaporation is strongly suppressed in comparison
with the neutron evaporation from the neutron-rich intermediate state, which is
shown in Fig. 5.18 (extracted from [140]). This pioneering work was followed by
a rather intense activity in both experimental [3, 28–33] and theoretical [140, 141]
aspects (see also [1, 3]).

The inclusive cross-section of the two-nucleon knockout process is significantly
smaller than the corresponding one-nucleon process, reaching maximum values of
only a few mb. Even though the cross-sections are small, interesting results have
been obtained. They refer, as in the case of single-nucleon knockout, to the momen-
tum distributions of the emerging fragment and the associated cross-sections (both
inclusive and exclusive).

The first experiment [28] performed at NSCL, concentrated on the study of
two-proton knockout from neutron-rich nuclei (28,30Mg and 34Si). The A-2 heavy
residues were detected with the A1900/S800 [84] spectrograph and the SeGA [136]
array allowed the coincident detection of the γ -fragment de-excitation. The inter-
pretation of these data pointed to the direct character of the process. This early work,
which included a simplified reaction model where the two removed nucleons were
uncorrelated and diffractive processes were completely neglected, provided a rather
good agreement. Following experiments proved the validity of the method when
applied to the two-neutron knockout of neutron-deficient species, namely 34Ar, 30S
and 26Si [29]. Similarly to the case presented above, the obtained cross-sections
were consistent with direct reaction mechanisms. Cross-sections to individual ex-
cited states were measured using particle-γ coincidences with an identical exper-
imental setup to Ref. [28]. In this work, the reaction mechanism description was
improved and included ingredients of eikonal reaction theory and correlated many-
body wave functions from shell-model calculations. In this model, several reac-
tion mechanisms are considered to participate in the one-step two-nucleon removal:
(a) the inelastic removal of both nucleons, (b) the elastic removal of one of them
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Fig. 5.19 Cross-sections for
the ground state (triangles) in
the two-neutron knockout
reaction [29], compared with
the corresponding theoretical
cross-section [141] for
correlated (circle) and
uncorrelated (squares)
neutrons (figure extracted
from [29])

and the inelastic removal of the second and (c) the elastic removal of both nucleons.
With these considerations, the cross-section of the two-nucleon removal process is
expressed as (ignoring the Coulomb contribution):

σ = σstrip + σstrip-diff + σdiff , (5.8)

where σstrip and σdiff correspond to events where both nucleons are either inelas-
tically or elastically scattered, and σstrip-diff corresponds to one nucleon interacting
inelastically, while the other scatters elastically (details on the reaction model can be
found in [140, 141]). The first two processes involve energy transfer to the target nu-
cleus. Typically, and for the case of removal of well-bound nucleons, the diffraction
mechanisms (options (b) and (c) in previous paragraph) amount for at least 40 % of
the cross-section.

From the comparison of the cross-sections for the ground-state state with the
theoretical estimations it was concluded that the presence of correlations between
the knockout nucleons is needed in order to reproduce the experimental data (see
Fig. 5.19).

Other experiments followed, extending the study to other nuclear chart regions
(i.e.:N = 20 [31],N = 28 [30, 32]). The possibility of extracting structural informa-
tion from the exclusive momentum distributions in a similar way as the one-nucleon
knockout process was also reconsidered, and a reformulation of the theoretical cal-
culation adapted to the two-nucleon removal case was proposed [142].

Sophistications introduced later consisted of simultaneous identification of the
residual heavy fragment, the removed proton and other light charged particles after
the two-proton removal reaction from 28Mg projectile [143]. The experiment was
again performed at NSCL, the heavy fragment was detected by the A1900/S800 [84]
spectrograph and the protons and other light charged particles were detected with the
HiRA [97] array. These data complement the previous work of Ref. [28], detecting
the coincidence between the heavy residue and its γ de-excitation. In this new case
triple coincident events were recorded, consisting of two charged particles detected
in HiRA and the 26Ne fragments in the spectrograph. As mentioned above, besides
protons HiRA was also able to record other light charged particles like deuterons,
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Fig. 5.20 Two-proton removal from 28Mg. Missing-mass spectrum for events where two protons
were detected in coincidence with the 26Ne residue. The spectrum was fitted with two Gaussian
peaks. The lower peak, at the target mass, is due to the diffraction mechanism (green, solid line),
and the larger peak is attributed to events where at least one proton was removed in an inelastic
collision with the target (figure extracted from [143])

tritons or α’s, coming from inelastic reactions of the removed protons with target
nucleons. The individual contribution of the three removal mechanisms was deduced
from the missing-mass calculated for each triple-reconstructed event. Figure 5.20
shows the missing-mass spectrum for events where two protons were detected in
coincidence with the 26Ne residue. The experimental results obtained are consistent
with the expectations of the eikonal theory described in [141].

With this scenario two-nucleon removal reactions are nowadays fully accepted
as spectroscopic tools. In the case of direct knockout of “well-bound” nucleons, the
associated cross-sections and A-2 fragment momentum distributions are considered
as a source of information which enables to probe structural changes. They also
provide information of the existence of correlations at the nuclear surface.

To date, the knockout of two-weakly bound nucleons has not been widely ex-
plored. Experimental conditions do not favour the direct process and the two step
reaction mechanism is dominant in this case. Simpson and Tostevin [144] made a
careful analysis of this scenario, interpreting two-neutron removal from neutron-rich
carbon isotopes (15–19C). This work determined the contribution of the single-step
process to the measured cross-sections being only 10 % of the total cross-section.

Other experiments [41] have been performed at RIBF (Japan) employing
unprecedented intensities for exotic secondary beams of 19,20,22C at around
240 MeV/nucleon. Narrow momentum distributions were observed after one-
neutron knockout of 19,20C and two-neutron removal of 22C, whereas the two-
neutron removal of 20C yielded much broader distributions. These results together
with the associated cross-sections were interpreted in the case of single-nucleon
knockout with help of an eikonal reaction model. The obtained results agree quite
nicely with the general systematics and will be discussed in the next section.

For the interpretation of two-neutron removal cross sections, the case of one-
neutron removal through unbound intermediate states followed by decay to a bound
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state as well as the direct two-neutron removal case were considered. A clear dom-
inance for the first mechanism, with a direct contribution of around 8 % only and
thus consistent with the early work of Simpson et al. [144] was obtained. Unfortu-
nately the setup being used did not allow for exclusive measurements and the firm
empirical confirmation of this estimation has still to wait for future experiments.

5.2.3.5 The Quest of Spectroscopic Factors

In previous sections we have discussed the ability of knockout reactions to deter-
mine the nuclear structure of rare isotopes. It has been also discussed that in order
to reach this goal, it is necessary to compare the experimental observables with de-
tailed calculations that require two main ingredients: a structure model and a proper
description of the reaction mechanism (see Sect. 5.2.1).

Section 5.2.3.1 recounts in detail how knockout reactions are able to determine
the nuclear structure of weakly bound halo states in which the proton (neutron)
single-particle picture, the basis of the shell-model, is very realistic. But what hap-
pens when the knockout involves deeply bound states? In this case the picture pro-
vided by the shell model could be far from complete. Presently, truncated model-
space effective interactions are employed and these are known to include only par-
tially correlation effects that could be of importance in the case of deeply bound
states. Indeed, the importance of these correlation effects can be evaluated from the
determination of the single-particle spectroscopic strengths.

An important body of strength functions was obtained for the case of stable nu-
clei from electron-induced quasi-free scattering (e, e′p) obtained some decades ago.
In these cases, it has been observed that the spectroscopic strength of valence pro-
tons (Rs )22 exhibit a value of ≈0.6–0.7 [5], with Rs being the ratio between the
experimental and theoretical cross-section. It will be of interest to extend the use of
this technique to gain information on exotic nuclei. This could be achieved in the
future with eA colliders, as the one foreseen in ELISe/FAIR [145] experiment. In
the mean time, one can utilize other suitable direct reactions such as transfer and
hadron knockout.

In the particular case of knockout reactions, and under the assumption of the
correctness of the reaction description provided by the eikonal model, Rs (deduced
by Eq. (5.6)) can be taken as a quantification of the pertinence of the pure single-
particle description. The closer this value is to unity the more realistic the single-
particle picture and so the effect of correlations between nucleons is less significant.

If we now come back to the first results of single-nucleon knockout of neutron
and proton halo states presented in Sect. 5.2.3.1 and evaluate the corresponding
spectroscopic strength we will obtain Rs ≥ 0.8, significantly larger than the values
recorded with stable nuclei. The question is now whether this technique can be
applied to the study of exotic species in a general manner and what happens when
the knockout of very deeply bound nucleons is addressed.

22Definition introduced in Eq. (5.7).
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Fig. 5.21 Longitudinal momentum distribution of 31Ar residues after one-neutron knockout re-
action, compared with theoretical calculations assuming l = 0 (dashed line) and l = 2 (solid line)
knocked out neutrons. The unreacted projectile beam 32Ar fitted with a rectangular distribution
folded with a Gaussian resolution function is also shown [146] (figure extracted from [146])

An instructive example will be to explore an extreme case such as the experimen-
tal study of 32Ar [146] via one-neutron knockout at 61 MeV/nucleon. This nucleus
is probably the most bound neutron-removal case investigated so far with this tech-
nique, which leads to the proton-dripline nucleus 31Ar. This nucleus, with a 5/2+
ground state is peculiar because it has no bound excited states. A direct measure-
ment of the core-fragment provides exclusive information without need of gamma
coincidence.

From the experimental point of view there is an important difference between
this experiment and all the others previously discussed. The S800 spectrograph was
operated in “focus mode” with larger acceptance but lower intrinsic momentum res-
olution, as shown in Fig. 5.21. The theoretical momentum distributions depicted in
this figure were calculated using the black-disk model [1] and folded with the mea-
sured response of the apparatus. This spectrum clearly associates the reaction with
a l = 2 knockout neutron, confirming the spin and parity assignment for the 31Ar
ground state of 5/2+. Comparison of the experimental cross section 10.4(13) mb
with the theoretical one yields a surprisingly low quenching factor of Rs = 0.24(3).
The authors of that work compared this case with 22O, which has the same neu-
tron number N = 14 and Z = 8 protons, and considered as almost doubly magic
nucleus. The quenching factor, obtained in this case is 0.70(6) (using an average of
two different experimental results [35, 36, 48] as experimental cross section), which
is well above the result obtained for 32Ar. The authors suggested that this very strong
quenching is an indication of nuclear structure effects, reflecting correlations linked
to the high neutron separation energies (22.0 MeV) in this very asymmetric nuclear
system.

Other extremely asymmetric neutron-deficient systems were also explored (28S
and 24Si) via one-proton and one-neutron knockout. This work presented in
Ref. [147] is very interesting since it allows to explore in the same nuclei both



218 D. Cortina-Gil

Table 5.4 Partial cross sections (mb) to all final states Iπ after one-neutron and one-proton knock-
out from 28S and 24Si. Different contributions of theoretical single-particle cross sections in the
eikonal model are reported. The sum multiplied by the spectroscopic factor is compared with the
experimental values [147]

Fragment Iπ C2S σknocksp σ
diff
sp σ theo σ expt Rs

Projectile 24Si
23Alg.s. 5/2+ 3.42 17.56 5.18 84.68 67.3(35) 0.79(4)
23Sig.s. 5/2+ 1.71 10.96 2.47 25.01 9.9(10) 0.39(4)

Projectile 28S
27Pg.s. 1/2+ 0.832 20.73 7.84 25.56 31(3)
27P1.1 MeV 3/2+ 0.82 14.61 4.40 16.75 6.8(11)
27Pincl. 42.32 38(3) 0.90(7)

27Sg.s. 5/2+ 3.136 8.99 2.10 37.40
27Se.s. 3/2+ 0.119 8.72 2.03 1.37
27Sincl. 38.77 11.9(12) 0.31(3)

Fig. 5.22 Reduction factor
Rs (defined as the ratio
σex/σth) evaluated for
two-nucleon knockout
cross-sections. Note that
inclusive and exclusive data
are included in the figure,
see [31] for details

single-particle strengths associated with weakly bound nucleons (protons in the one-
proton knockout case) and strongly bound nucleons (neutrons in the one-neutron
case). The Rs values obtained are recorded in Table 5.4. Again, we can observe
very different values of Rs for the two reaction channels studied.

These experimental results reinforce further the strong reduction observed in sin-
gle particle strengths of deeply bound nucleons, whereas the reduction factor is close
to unity for the case of knockout of weakly bound nucleons. A similar analysis per-
formed for the two-nucleon removal cases discussed in Sect. 5.2.3.4, yields very
similar results [31] (see Fig. 5.22), with Rs around 0.5 except for the 32Mg case.

It is illustrative to analyse the systematic comparison performed by Gade and
collaborators [147] (see Fig. 5.23), in which they represent an important collection
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Fig. 5.23 Summary of
quenching or empirical
reduction factors obtained for
spectroscopic factors
evaluated from knockout
reactions [147] (figure
extracted from [147])

of the measured Rs reduction factors as a function of the difference in separation
energies of the nuclei considered (�S). The quantity �S measures the asymmetry
of the Fermi surface for each nuclei.23 The following definitions�S = Sp − Sn and
�S = Sn− Sp stand for the case of proton and neutron knockout respectively. Note
that the figure also includes data from (e, e′p) measurements mentioned earlier [5].

Is interesting to note that the physical occupancies are in general much lower
than those suggested by the shell model, however this discrepancy is smaller for
loosely bound nuclei (≈0.85 left top corner in Fig. 5.23). Cases corresponding to
proton-removal from relative symmetric nuclei, with values ranging from 0.5 to 0.6,
are in agreement with the findings obtained earlier with quasi-free “proton knock-
out” (e, e′p) reactions that addressed stable nuclei and with �S ≈ 0. Knockout of
deeply-bound nucleons as the ones represented by the neutron-knockout in near
proton-dripline nuclei (right bottom corner in Fig. 5.23) are associated with Rs fac-
tors lower than 0.4. Using (e, e′p) [148] as an analogy again, this small reduction
factor is interpreted in terms of correlation effects that reveal the incomplete and
simplified picture of nuclei provided by effective-interactions used nowadays. To
complete the picture, note that Fig. 5.23 contains a mixture of exclusive and inclu-
sive information. In the inclusive knockout cross section the quenching factor Rs is
defined as the ratio of the experimental cross section to the sum of the theoretical
cross sections to any state lying below the neutron threshold.

In spite of such significant experimental and theoretical progress, the tendency
shown in Fig. 5.23 is not fully understood. The determination of absolute spec-
troscopic factors is a hot topic in the nuclear structure domain. The information
gained with nucleon removal reactions induced by radioactive beams is undoubt-
edly important. The interplay between the nuclear structure and reaction input is
necessary in order to extract this information, and the incomplete description of any
of these ingredients could be the origin of the strong reduction observed. This in-
teresting topic will be the subject of study in the coming years and there are plans

23Difference between the Fermi level for neutrons and protons in a given nucleus.
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to extend it with the use of QFS reactions induced by radioactive beams. There is
also an ongoing concerted effort to improve the reaction mechanism understand-
ing (Refs. [152, 157]). The evaluation of spectroscopic factors in the medium-mass
range coming from ab-initio calculations is expected to shed light on this exciting
topic.

5.3 Quasi-Free Scattering Reactions with Rare Isotope Beams

In this last part of the lecture we will complete the introduction to the Quasi-Free
Scattering (QFS) (see Sect. 5.1.1) with recent experiments addressing the study of
rare isotopes produced in fragmentation facilities. We will finish reporting on the
status and progress of the QFS program with rare exotic isotopes foreseen in future
experimental setups such as R3B [93] at FAIR.

As has been outlined in Sect. 5.2.3.5, further investigations on single-particle
properties in rare nuclei, as well as the role of in-medium effects on the NN interac-
tions and the existence of NN correlations, that would complement the work done
so far with knockout reactions, are certainly needed.

The use of QFS reactions such as (p,2p) and (p,pn), induced by high energy
proton beams offers very attractive possibilities. QFS reactions are able to excite
both valence nucleons and also deep-hole states, giving access to the associated
single-particle properties. Compared with the nucleon-knockout cases presented in
Sect. 5.3, this reaction channel will not reduce the wave function exploration to the
most external regions, thus providing a more complete picture of the structure of
the nucleus. Moreover, the detection of both nucleons, the target and the removed
nucleon, would provide (together with the gamma de-excitation of the A-1 fragment)
fully exclusive measurements, that in turn could help to characterize the reaction
mechanism.

Up to now, we have only referred to QFS experiments performed in direct kine-
matics, with high energy protons impinging on the nucleus of interest [57]. It is clear
that the use of inverse kinematics opens the exciting possibility of exploring nuclear
structure for all kind of nuclear species.

A first attempt to this experimental approach took place few years ago at the HI-
MAC (Heavy Ion Medical Accelerator in Chiba) facility in NIRS (National Institute
of Radiological Science in Japan) by Kobayashi and collaborators [149]. Different
carbon isotopes (9–16C) at 250 A MeV impinged on a solid-hydrogen target. These
reactions provided an excellent scenario to get systematic information on weakly-
to strongly bound 1p valence protons (lower N values) and deeply bound 1s inner
shell protons (larger N values). The four-momenta of the two protons measured in
a two-proton telescope located at ±39◦ with respect to the beam axis allowed the
determination of proton binding energy distributions (Bp)24 of the different states

24Noted Sp in Ref. [149].
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Fig. 5.24 Proton-separation energy distributions (Bp , denoted as Sp in the figure): (A) inclusive,
(B) A−1B detected in the forward spectrometer, (C) no boron isotopes detected in the forward
spectrometer [149] (figure taken from [149])

from which the proton was removed in the projectile (see Fig. 5.24 and (5.9)).

Bp = Sp +E∗
A−1, (5.9)

with Sp in this formula being the minimum energy to separate the last bound proton
and E∗

A−1 the excitation energy of the single particle state relative to the nucleus
Fermi level (depending on how deeply bound the removed proton is this magnitude
can vary from 0 MeV up to several tens of MeV).

The coincidence with the remaining fragments performed with a forward spec-
trometer is the responsible of the selection of the different transitions. Those to the
ground state (case B in Fig. 5.24), were selected by gating on the A−1B (boron)
fragments, whereas those to the s-hole states (case C in Fig. 5.24), required the
anti-coincidence with B isotopes. The s-holes states are associated with removal
of deeply bound protons and are produced with high excitation energies. The high
excitation energy allows to open channels decaying via charged particles emission.
Those channels, in which the A-1 fragment does not survive, provide information of
the inner region of the projectile wave-function. It is important to mention the good
agreement found between the 12C results in this experiment and the one in direct
kinematics [57].

In the same experiment, the momentum distributions of protons occupying both
p- and s-orbitals could be measured and are presented in Fig. 5.25. In both cases,
removal from p (A in the figure) and s-orbitals (B in the figure), one can clearly
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Fig. 5.25 Proton momentum distributions (A) for the p-hole states via AC(p,2p)A−1Bgr reac-
tion. (B) for the s-hole states via AC(p,2p)B̄ [149] (figure extracted from [149])

observe narrower distributions for lower masses (where the valence protons are
more weakly bound). An accurate determination of the associated spectroscopic
factors was not possible in this work but the systematic evaluation of the ratio of (p-
hole)yield/(s-hole)yield shows an increase for the 9C case. This is also interpreted as
a indication, analogous to the nucleon knockout case, of large spectroscopic factors
associated with subshells for the weakly bound nucleons.

From the theoretical point of view, QFS has traditionally been interpreted in the
framework of Distorted Wave Born Impulse (DWBI) approximation [150, 151].
There are new attempts to formulate a model to describe QFS observables based
on the eikonal theory as it is shown in Ref. [152]. On the other hand the description
of the QFS reaction mechanism on proton targets (free of stripping contributions)
is also possible to be addressed with approaches such as the Continuum-Discretised
Coupled Channels method (CDCC) [153–155], or even those based on complex
solutions of the full Faddeev/AGS equation [156, 157].

5.3.1 Status of the QFS Program with Exotic Rare Isotopes at R3B

The study of single particle properties of exotic nuclei is an important part of the
experimental programme of several future nuclear physics instruments. First exclu-
sive measurements of QFS reactions of rare isotopes on a proton target have been
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Fig. 5.26 LAND/R3B setup (precursor of R3B/FAIR experiment) presently installed at GSI [93]

performed recently at GSI using inverse kinematics with the LAND/R3B setup (see
Fig. 5.26).

The R3B/NUSTAR [93] collaboration intends to apply this technique using the
intense radioactive beams that will be delivered by the SuperFRS/FAIR [158] in
inverse kinematics. At energies around 700 MeV/nucleon, both outgoing nucleons
have energies in the range where the NN cross section is at a minimum, thus maxi-
mizing the transparency of the nucleus and minimizing final state interaction.

The large acceptance and high resolution setup proposed R3B/FAIR [93] would
allow background-free measurements and also for better control of final state inter-
actions.

The well known 12C(p,2p)11B reaction has been studied as the best valida-
tion of the experimental technique [159, 160] in the existing LAND-R3B setup (see
Fig. 5.26). An incident beam of 12C at 400 A MeV impinged on a CH2 target.
A layer of silicon strip detectors surrounding this target (in a box geometry) and
the 4π -calorimeter Crystal Ball. Both detectors allowed the detection of the light
reaction products (in the (p,2p) case, two protons emitted back-to-back and with
an average angular aperture ≈90◦). The rest of fragments are deflected by the large
acceptance magnet ALADIN and identified behind it. The neutrons, unaffected by
the magnetic field of ALADIN [161], are identified with help of the LAND [162]
detector.

Compared with other experiments two novelties are introduced. On the one hand,
the proton detection is not limited to a co-planar geometry and on the other, the com-
plete kinematical detection of incident beam and all the fragments emerging from
the reaction allows for the first time to record redundant information on the internal
nuclear momentum of the removed nucleon, either with the four-momenta determi-
nation of the two protons or with the four momenta of the fragment. Figure 5.27
shows the preliminary results [159, 160] of the total excitation energy spectrum of
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Fig. 5.27 Total excitation
energy spectrum of the
residual 11B for the
12C(p,2p)11B
reaction [159, 160]

the residual 11B coming from 12C(p,2p)11B reaction that are in good agreement
with other data addressing the same reaction [57, 149].

Different experiments25 studying light neutron-rich nuclei with Z ranging from
4 to 9 produced by fragmentation of a 400 A MeV 40Ar primary beam, and utiliz-
ing kinematically complete measurements of reactions at relativistic energies, were
also done with the LAND/R3B reaction setup. The physics topics studied comprise
the measurement of astrophysical reaction rates relevant for r-process nucleosyn-
thesis using heavy-ion induced electromagnetic excitation and quasi-free knockout
reactions to study the evolution of shell and cluster structures close to and beyond
the dripline. Unbound (ground and excited) states could be populated and identified
in (p,2p) reactions as it is shown in Ref. [163]. The quenching of single-particle
strengths in neutron-proton asymmetric nuclei was also addressed by knocking out
deeply bound protons and neutrons in (p,2p) and (p,pn) reactions for nuclei with
varying neutron-proton asymmetry. The evaluation of this interesting collection of
data is presently under analysis and the first results are expected soon.

All these works open a very promising future of new investigations that will one
day profit from the high-energy intense radioactive beams at FAIR. They would
enable the realization of measurements on exotic nuclei, with the R3B/FAIR ex-
periment overcoming the present experimental limitations. R3B/FAIR [93] will be
a versatile reaction setup with high efficiency, acceptance, and resolution for kine-
matically complete measurements of reactions with high-energy exotic beams. The
setup will be located at the focal plane of the high-energy branch of the Super-FRS.
A substantial improvement is expected with respect to resolution and an extended
detection scheme is foreseen. It will comprise

25S393 experiment performed in August 2010, Spokesperson T. Aumann.
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– a zero-degree superconducting dipole magnet with a large vertical gap allowing
an angular acceptance of ±80 mrad for neutrons and a field up to 5 T able to bend
14◦ charged fragments for 20 Tm beams.26

– a detection setup for light (target-like) recoil particles, formed by a double layer
of Si strip detectors. A liquid hydrogen target could be hosted in the inner part
of this Si-tracker. The recoil particle detector would provide precise tracking,
vertex determination as well as energy and multiplicity measurement with high
efficiency and acceptance.

– a new generation spectrometer-calorimeter CALIFA. This detector has to act as
spectrometer of low to medium energy γ , being at the same time calorimeter for
the target recoil (high energy gammas and light-charged particles). This will be
achieved by an extremely segmented detector based on highly performant scintil-
lation crystals (in single [92] or phoswich [164] configuration).27

– a dedicated tracking systems for the detection of fragments behind the dipole
magnet. For the tracking of light charged particles, i.e. protons, behind the R3B
dipole magnet two identical drift chambers (DHC) are foreseen. Each DCH cov-
ers an active area of 100 × 80 cm2, thus providing a large enough acceptance
behind the magnet to detect decay protons. A large-area scintillating fibre detec-
tor is foreseen, for the position measurement of heavy fragments, a few meters
behind the magnet. The system is completed by a ToF detector covering the full
acceptance of the charged particles and ions produced in relativistic heavy-ion
collisions while providing a time-of-flight resolution such that isotopes around
the mass 200 can be isotopically resolved.

– a neutron detector NeuLAND featuring a high detection efficiency, a high resolu-
tion, and a large multi-neutron-hit resolving power. This is achieved by a highly
granular design of plastic scintillators, avoiding insensitive converter material.

– a high-resolution fragment spectrometer that could be constructed in the second
phase of the experiment and would substitute the tracking systems for the de-
tection of fragments in those cases demanding high-resolution measurements,
where �p/p in the order of 10−4 is needed. The proposed solution is based on
a spectrometer placed behind the large-acceptance dipole. The spectrometer will
be placed at an angle of 18◦, which is the maximum bending angle of the dipole
(5 Tm field integral) for a beam with magnetic rigidity of 15 Tm, and will be
operated as a zero-degree spectrometer.

Lastly we mention another innovative device that will be dedicated to the study
of QFS reactions. MINOS (Magic Numbers off Stability) [165], aims to investi-
gate the properties of in-medium NN interactions through the spectroscopy of the
most exotic nuclei produced at fragmentation facilities (RIKEN and GSI/FAIR). The
project includes the construction of a dedicated and innovative device composed of
a thick cryogenic liquid hydrogen target surrounded by a cylindrical time projection

26The maximum rigidity provided by the Super-FRS will be 20 Tm.
27In a phoswich detectors the energy of the particles is determined from two consecutive energy
losses in consecutive detectors.
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chamber devoted to determine the reaction vertex by tracking charged particles pro-
duced by (p,2p) or (p,pn) reactions with excellent resolution. MINOS has been
built at IRFU, CEA Saclay28 and will be soon used to perform the first experimental
campaign in RIBF/RIKEN.

5.4 Summary and Conclusions

This lecture intended to provide a comprehensive overview of some direct reactions
used at high energies to explore the nuclear structure of rare isotopes.

We have presented the interesting implications of using “knockout reactions”,
emphasizing the experimental and conceptual aspects associated with these kind of
experiments and their possible ramifications in the analysis and interpretation of the
results.

Halo nuclei, which have a relatively simple and well-known nuclear structure,
were used to show the power of the method. Experiments of one-nucleon knockout
from halo states provide a very satisfactory description of the reaction mechanism,
making it possible to experimentally deduce the structure of the involved nuclei.

Though generally successful, application of the technique to more complex nu-
clei is not without experimental difficulties that complicate the extraction of quan-
titative information. Reactions of this kind have been used to measure the physical
occupancies (C2S) associated with the different configurations that define the bound
states of the exotic nuclei under study. The experimental spectroscopic factors ob-
tained are generally smaller than those predicted by the large-scale shell model. The
existence of these quenching factors has been interpreted in terms of correlation
effects pointing out the simplified picture of the nucleus provided by shell model
calculations. Deficiencies in the reaction mechanism description could be also be-
hind this effect.

Even though great progress has been made, the situation is not yet clear and
the determination of absolute spectroscopic factors with nucleon removal reactions
induced by radioactive beams will certainly be a hot topic in the next years. The
recent extension of the use of quasi-free scattering reactions in inverse kinematics
opens new experimental opportunities. The most important will be the availability
of fully exclusive measurements, enabling a better understanding of the reaction
mechanism. The information that one can extract about the exotic projectile wave
function will not be restricted to the nuclear surface, being possible to extend this
exploration to the removal of strongly bound nucleons allowing a deeper study of
the role of NN correlations.

Construction and exploitation of new generation facilities (i.e.: NUSTAR/FAIR,
BIGRIPS, FRIB), in the near future, will significantly increase the intensity of the
available exotic beams. This, together with the development of new specific detec-
tion systems (i.e.: R3B@NUSTAR/FAIR, MINOS . . . ) will open new perspectives
in this field.

28Project funded by the European Research Council for the period 2010–2015.
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Chapter 6
Nuclear Charge Radii of Light Elements
and Recent Developments in Collinear Laser
Spectroscopy

Wilfried Nörtershäuser and Christopher Geppert

6.1 Introduction

It is now known for nearly a century that atomic spectra are a fabulous tool to study
nuclear ground-state properties through the hyperfine structure of atomic transi-
tions. The magnetic hyperfine splitting of spectral lines was already observed—even
though not interpreted as such—by A. Michelson [1], the influence of the mass of
the nucleus lead to the discovery of deuterium by Harold Urrey [2]. Schüler and
Schmidt observed the electrical hyperfine structure in 151,153Eu in 1935 [3], which
was interpreted by H.B.G. Casimir [4] as arising from a deformation of the nuclear
charge distribution. While these first investigations were performed on stable iso-
topes, it was soon recognized that this technique can also be applied to radioactive
short-lived isotopes. In the early years, atomic beam magnetic resonance (ABMR)
measurements and radiation-detected optical pumping (RADOP) were the work
horses in this field since the radio-frequency transitions provided sufficient reso-
lution to study the atomic hyperfine structure [5, 6]. With the invention of the laser,
the study of optical transitions became possible with higher resolution. Resonance
laser excitation was combined with the ABMR technique to study the isotopes of
sodium [7]. But shortly thereafter a new technique was proposed [8, 9] and real-
ized on-line first at the TRIGA reactor in Mainz [10, 11] and then later at ISOLDE
[12]: collinear laser spectroscopy (CLS) is widely applicable and a large part of the
data for radioactive isotopes available today has been harvested with this technique.
As a second workhorse, resonance ionization spectroscopy (RIS) was established
on-line and is now commonly used for both, the generation of isobarically pure (or
at least enriched) beams at on-line mass separators and studies of hyperfine struc-
ture and isotope shifts in the ion source (hot cavity) or in gas cells (for a recent
review see [13]). While the CLS technique offers high resolution and can be applied
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all over the nuclear chart, RIS inside hot cavities and gas cells is often more sen-
sitive but has limited resolution due to the Doppler width or pressure broadening
of the transition in the corresponding environment. Pulsed lasers are used in these
cases, which have bandwidths matched to the width of the broadened transition line.
However, based on a principle demonstrated earlier [14], a new setup has been es-
tablished at ISOLDE that combines the advantages of both techniques, applying
resonance ionization in collinear laser spectroscopy (CRIS, collinear resonance ion-
ization spectroscopy) [15].

In a previous volume of this series, an overview on the determination of nu-
clear moments has been given by Neugart and Neyens [16]. Since then, new tech-
niques have been established for the study of charge radii, some of them are based
on collinear laser spectroscopy, others employ ion and atom traps. This lecture is
intended to be an extension to [16] with its focus on high-resolution laser spec-
troscopy for on-line charge radius measurements. In parallel there was also progress
in medium–to low-resolution work performed with pulsed lasers in hot-cavity ion
sources and gas cells, which has been part of a recent review about resonance laser
ionization for nuclear physics [13] and will not be discussed here. This note does
also not provide a general or complete review of this field, but rather a guide for
newcomers into some of the latest technical developments. Therefore, we will focus
in the first section on the way to extract information about nuclear charge radii from
the optical spectra and in the second part on experimental aspects. A few examples
of extracted nuclear data will be given but we do not discuss the results in terms
of nuclear structure in depths. Therefore we refer to the original literature. More
general recent reviews can be found in [17, 18].

6.2 Atomic Theory: Isotope Shift and Charge Radii

The finite mass and size of the atomic nucleus has a small but distinct influence on
the optical spectrum. If one compares the wavelength (or transition frequency ν) of
an electronic transition along a chain of isotopes of a certain element, a small shift
between the lines can be observed. This frequency difference

δνAA
′ = νA′ − νA (6.1)

between the isotopes with mass numbers A and A′ is called the (transition) isotope
shift1 and can be divided into the finite nuclear-mass shift (MS) and the nuclear
volume or field shift (FS)

δνAA
′

IS = δνAA′MS + δνAA′FS . (6.2)

1We can also introduce a level isotope shift, which is the difference in total binding energy of an
atomic level in two isotopes. In the following we will use the term isotope shift synonymously with
the transition isotope shift.
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6.2.1 Mass Shift

The mass shift is connected to the change of the kinetic energy of the nuclear motion
in the center-of-mass (CM) frame when additional neutrons are added to the nucleus.
For this we can write in a non-relativistic approach

Ekin,nuc =
�P 2
nuc

2Mnuc
, (6.3)

with Mnuc the mass of the nucleus. Since the center-of-mass of the atom is per
definition at rest in the atoms rest frame, we can replace the nuclear momentum by
the negative of the total electron momenta

�Pnuc =−
N∑
i=1

�pi (6.4)

resulting in

�P 2
nuc

2Mnuc
= (

∑ �pi)2
2Mnuc

= 1

2Mnuc

(∑
i

�p 2
i +

∑
i �=j

�pi · �pj
)
. (6.5)

This is the total energy of the nuclear motion for a specific electronic state. If one
of the electrons is excited into a different state, the nuclear motion must adapt to
the new electron momenta and the kinetic energy might change. The corresponding
energy must be delivered from the absorbed photon and this gives rise to a small
change of the transition energy.2 The isotope shift is caused by the difference of this
energy due to the different masses of the two isotopes. This can be summarized as

δνAA
′

MS = MA −MA′
MAMA′

(KNMS +KSMS). (6.6)

The so-called “normal mass shift” (NMS) is the part of the shift that arises from the
change of the �p2-term in (6.5), representing the active electron and can be easily
evaluated by replacing the electron mass me with the reduced mass of the system.
This leads to

KNMS =meν. (6.7)

The “specific mass shift” (SMS) is caused by the change of the electron correlation
terms �pi · �pj . For KSMS there is no analytical solution, it can only be calculated
numerically by solving electron-correlation integrals that are notoriously difficult to
evaluate. This is already a challenge in a two-electron system and has so far being

2Momentum conservation requires also that the atom acquires linear momentum in the absorption
process. While this can usually be neglected for heavy atoms in allowed dipole transitions, the
contribution has to be considered for the lightest elements.
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solved accurately and in full detail only for up to three electrons as will be discussed
below.

To obtain a size estimate of the mass shift, we consider first the Lyman-α
line in hydrogen. Using Eq. (6.7) we obtain the mass shift constant KNMS =
1.4 ·103 GHz amu and with the masses of the proton and the deuteron from Eq. (6.6)
a mass shift of δν1,2

MS = 672.8 GHz. From the functional dependence on the atomic
mass it is clear that this huge contribution decreases roughly as 1/A2 with nuclear
mass and becomes rather small for heavier elements. In atoms with more than one
electron, the specific mass shift has to be considered. Even though there is no ana-
lytical solution, a few rules of thumb have been derived [19]:

• For a usual alkaline-like s→ p transition the specific mass shift is expected to be
rather small, usually less than the normal mass shift. A notable exception of this
rule is the 2s→ 2p resonance transition in Be+, where the specific mass shift is
larger than the normal mass shift and has the opposite sign.

• Transitions involving d or f states can have specific mass shifts that are several
times larger than the normal mass shift and have a positive or a negative sign.

6.2.2 Field Shift

The second part of the isotope shift is related to the finite nuclear size (FNS) and is
the interesting part from the nuclear physics point of view. For a point-like nucleus,
the electrons experience a true Coulomb potential that approaches −∞ at the center.
But for an extended nucleus, the potential deviates from the 1/r-law within the
nuclear volume and acquires a finite value at the nuclear center. Thus, electronic
levels that have wave functions with a finite probability density inside the nuclear
volume, |Ψ (0)|2 �= 0, increase in energy since the electron is less strongly bound in
this region. This is depicted in the center of Fig. 6.1. The contribution of the finite
nuclear size effect to the total binding energy of an atomic level

EFNS = Ze
2

6ε0

〈
r2

c

〉 ∣∣Ψ (0)∣∣2 (6.8)

is proportional to the electron density at the nucleus and the nuclear mean-square
charge radius

〈
r2

c

〉= 1

Ze

∫
ρc(r)r

2 dV, (6.9)

where ρc(r) is the nuclear charge density normalized to the charge of the nucleus,
i.e.

∫
ρc(r)dV = Ze. If it is possible to determine the total field shift of an electronic

state EFNS and to calculate |Ψ (0)|2, the mean-square nuclear charge radius can be
determined. Unfortunately, EFNS is experimentally only accessible for hydrogen-
like atoms where it contributes particularly to the 1s Lamb shift and it can be ex-
tracted from a comparison of the measured binding energy of the electron with cor-
responding quantum electrodynamical (QED) calculations.
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Fig. 6.1 Left: Representation of the normal mass shift (NMS, top) in a one-electron system and the
specific mass shift (SMS) in a two-electron system. If the correlation of the electrons is such that
they are preferably close in space, the nuclear center-of-mass motion is large, whereas it is much
smaller if the electrons prefer to be far apart and on opposite sides of the nucleus. Center: Origin
of the field shift. With increasing size of the nucleus, the electrostatic potential deviates already
at larger r from the pure Coulomb potential (dotted line). Thus, the level energies of the bound
electrons change and this change is particularly large for s-electrons having a finite probability for
being inside the nucleus. The dotted horizontal line represents the level energy of the s-electron
for a point-like nucleus, which is lifted in the two isotopes with mass numbers A (right) and A′
(left). The field shift is represented by the different length of the blue and the red arrow. Right:
Schematic of the contribution of field shift and mass shift in GHz to the overall isotopic shift,
drawn as a function of the atomic number

Laser spectroscopy is able to determine energy differences between two atomic
states with very high accuracy. The contribution of the FNS effect to the transition
frequency arises from the difference of the electron density at the nucleus |Ψ (0)|2
between the initial (i) and the final state (f) of the transition

δνFNS,i→f = Ze2

6hε0

〈
r2

c

〉(
�
∣∣Ψ (0)∣∣2)i→f (6.10)

with (
�
∣∣Ψ (0)∣∣2)i→f =

∣∣Ψf(0)
∣∣2 − ∣∣Ψi(0)

∣∣2. (6.11)

A measurement of the absolute transition frequency in an atom would thus allow
one the determination of 〈r2

c 〉 of its nucleus provided that the transition frequency
for a point-like nucleus can be calculated with sufficient accuracy.3 So far this is only
possible for hydrogen-like systems due to difficulties in QED calculations that can
currently be solved rigorously only for one-electron systems. An extraction of the

3This approach is used in the analysis of the spectra of Kα lines of muonic atoms to extract absolute
nuclear charge radii.
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absolute charge radius based on a laser spectroscopic determination of the transition
frequency was so far only possible for the proton based on the 1s Lamb shift [20].
A recent result for the proton charge radius obtained from the laser spectroscopic
determination of the 2s − 2p lamb shift in muonic hydrogen [21] deviates from
those of hydrogen and elastic electron scattering by about 5 − 7σ . This constitutes
the so-called proton-radius puzzle and is a very interesting topic but not related to
radioactive isotopes. For more details we refer to the recent review [22].

If we finally compare the transition frequency of two isotopes, the field shift
contribution to the transition isotope shift is

δνAA
′

FS = Ze2

6hε0
�
∣∣Ψ (0)∣∣2(〈r2

c

〉A′ − 〈
r2

c

〉A)

= Ze2

6hε0
�
∣∣Ψ (0)∣∣2 δ〈r2〉AA′ = F δ〈r2

c

〉AA′
, (6.12)

where we have dropped the index of the corresponding atomic transition i → f and
introduced the field shift constant F . In principle, F exhibits also a small isotopic
dependence, caused by the relativistic correction to the wave function at the origin—
i.e. inside the nucleus—and the mass-polarization term ( �pi · �pj ). However, its vari-
ation along a chain of isotope is usually sufficiently small to be neglected. Only at
very high-accuracy it might have to be included as was the case in the determination
of the charge radius of lithium isotopes: While the total contribution of relativistic
effects to F was calculated to be on the order of 10−3, the variation between the iso-
topes is only on the 10−5 level [23]. Equations (6.2), (6.6) and (6.12) can be written
in summary

δνAA
′

IS = (KNMS +KSMS)
MA −MA′
MAMA′

+ F δ〈r2
c

〉AA′
. (6.13)

In order to get an idea about the size of the field shift in the Ly-α line, we can
use the hydrogenic wave function of the 1s level and determine |Ψ (0)|2 = (πa3

0)
−1

with the Bohr radius a0. For the field shift constant this results in a value of F =
1.8 MHz/fm2. Using the root-mean-square (RMS) charge radii of hydrogen [24]
and deuterium [25] from elastic electron scattering, we obtain

δν
1,2
FS = 1.8

MHz

fm2
· (0.8952 − 2.1282) fm2 =−6.7 MHz. (6.14)

Thus the field shift is only 10 ppm of the mass shift of 670 GHz in this transition.
For an estimation of the functional dependence of δνAA+1

FS we can use the liquid-
drop (LD) model for a nucleus of radius R = r0 3

√
A with r0 = 1.2 fm and a constant

charge density of !c = Ze/(4πR3/3)

〈
r2

c

〉
LD = 4π

Ze

∫ R

0
!c r

4dr = 3

5
R2 = 3

5
r2

0A
2/3. (6.15)
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For small variations of A the charge radius changes according to

δ
〈
r2

c

〉
LD = 3

5
r2

0 (A+ δA)2/3 − 3

5
r2

0A
2/3 ≈ 2

5
r2

0A
−1/3 δA, (6.16)

while the electron density at the nucleus increases with Z2. In total this leads to
an increase of the field shift roughly proportional to Z2/

3
√
A. The approximate de-

pendency of the mass shift and the field shift on the atomic number is represented
on the right in Fig. 6.1. For light elements the mass shift by far dominates the field
shift, while they are of approximately the same size around Z = 38 and for heavier
nuclei the field shift supersedes the mass shift. Please note that due to the opposite
signs4 of the mass shift and the field shift, the total isotope shift vanishes around the
crossing point.

It should be noted that the equations given above are a very good approximation
for light isotopes, because the probability density can be considered constant with
the value |Ψ (0)|2 across the nuclear volume. For heavier isotopes δ〈r2

c 〉AA′ must be
replaced by the so-called nuclear parameter ΛAA

′
and higher radial moments have

to be considered

ΛAA
′ = δ〈r2

c

〉AA′ + C2

C1
δ
〈
r4

c

〉AA′ + C3

C1
δ
〈
r6

c

〉AA′ + · · · . (6.17)

The Seltzer coefficients C2/C1, etc. are tabulated in [26]. Relativistic corrections
and screening effects have to be considered for the electron wavefunctions in heav-
ier atoms, but we do not want to dwell in this further at this point because in the
following we will mostly be concerned with charge radii in light and medium-heavy
elements.

6.2.3 Evaluation of Mass Shift and Field Shift Constants

Summarizing the isotope shift as

δνAA
′

IS = δνAA′MS + F δ〈r2
c

〉AA′ (6.18)

it becomes apparent that we have to determine δνAA
′

MS and F in order to extract the

change in the mean-square charge radius δ〈r2
c 〉AA′ from a measured isotope shift

δνAA
′

IS . It would be straightforward if ab-initio atomic structure calculations could
provide these two values. However, already for two-electron systems such calcu-
lations are very demanding due to the correlation terms and are only possible in a
rigorous way for the lightest systems with up to three electrons as will be discussed

4The (normal) mass shift leads to an increase of binding energy for the heavier nucleus while the
increasing size weakens the binding.
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below. With increasing electron number, the number of possible configurations in-
creases and becomes even dramatically large if additional shells are opened as is
the case in the transition metals (d-shells) and even worse for the lanthanides and
actinides (f -shells and d-shells). Here, many overlapping and nearly degenerated
configurations exist. Moreover, QED corrections become more important with in-
creasing Z. Even for a “simple” electronic transition like the 4s 2S1/2 → 4p 2P1/2
transition in the alkaline-like Ca+ ion, specific mass shift calculations require large
model spaces and several thousands of configuration state functions have to be used
in order to obtain a value that has some reliability. Combined with the NMS—being
easily and accurately calculable—the total mass shift factor has typically a relative
accuracy of about 15–30 %. The field shift constant in this system can be calculated
more reliably and relative accuracies on the 10 % level are often estimated [27].

In cases where one has to rely solely on theoretical calculations, the systematic
uncertainties of those should be considered. But often it is possible to separate both
terms in (6.18) based on nuclear charge radii of stable isotopes determined with
other techniques or to use semi-empirical approaches to determine F .

6.2.3.1 Determination of Mass Shift and Field Shift Constants
with a King-Plot

A separation of mass and field shift contribution is possible if at least three isotopes
have known charge radii, independently determined by other techniques. Therefore
(6.13) is multiplied by the inverse mass-scaling factor to obtain

δνAA
′

IS
MAMA′

MA −MA′ = KMS + F MAMA′

MA −MA′ δ
〈
r2

c

〉AA′ (6.19a)

δ̃ν
AA′
IS = KMS + F δ̃

〈
r2

c

〉AA′
, (6.19b)

where x̃ represents the mass-scaled variable x. Using known isotope masses, one

can easily calculate δ̃ν
AA′
IS from the measured isotopes shifts and δ̃〈r2

c 〉
AA′

from the

known charge radii. Plotting then δ̃ν
AA′
IS as a function of δ̃〈r2

c 〉
AA′

will result in a
straight line with slope F and ordinate crossing at KMS. This kind of presentation
is known as “King-Plot”. An example is shown in Fig. 6.2 for the Cd isotopes in
the 5s 2S1/2 → 5p 2P3/2 transition. Here, the charge radii from muonic atoms (see
below) tabulated in [28] were used to calculate the modified isotope shifts plotted
on the abscissa. The small error bars in y and x direction are based on the statistical
uncertainty from laser spectroscopy and the muonic radii, respectively, whereas the
larger ones in x direction include the systematic uncertainty of the nuclear charge
radii. It is instructive to note that the even isotopes from 106Cd to 112Cd cluster at
one point in the King-Plot. This is always the case for isotopes that show a regular
behavior of the charge radius with δ〈r2〉AA′ ∼ (A− A′). Therefore, it is of impor-
tance for this technique to have information on the charge radii of several isotopes
and that these do not show such a regular behavior.
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Fig. 6.2 Modified King plot for stable cadmium isotopes in the 5s 2S1/2 → 5p 2P3/2 transition in
Cd+. Small error bars reflect the statistical uncertainties whereas the large horizontal error bars
are due to systematic uncertainties. A linear fit allows to determine the mass shift constant from
the crossing with the y axis and the slope is determined by the field shift constant F . The 1σ
confidence band is also shown

X-ray emission spectroscopy of muonic atoms is a technique that has been ap-
plied for a long time and has delivered charge radii for the majority of stable iso-
topes. Since the muon is 208 times heavier than the electron, it is bound closer
to the nucleus and its probability density inside the nucleus is much larger than
for an electron with the same principal quantum number. The most reliable infor-
mation on nuclear charge radii from muonic atom X-ray spectra is obtained from
2p1/2,3/2 → 1s1/2 (Kα-) transitions. Contrary to the electronic case, the wavefunc-
tion cannot be assumed to be constant inside the nucleus due to the much larger
probability density. Instead, the Dirac equation of the muon in the nuclear field
is numerically solved for the upper and the lower state of the X-ray transition as-
suming an analytical nuclear charge distribution, usually the two-parameter Fermi
distribution

ρN(r)= ρ0

1+ e(r−c)/a , (6.20)

where ρ0 is the central nuclear density, c is a size parameter and a is related to the
skin thickness t . The latter is usually defined as the radial extension of the region in
which the density drops from 90 % to 10 % of the central density, which refers to
t = 4a ln 3. The calculated energy difference between the two electronic states cor-
responds to the X-ray energy and the nuclear charge distribution is now modified in
order to obtain agreement with the experimental spectrum. The RMS radius of the
nucleus under investigation can be evaluated directly from the parameterized distri-
bution. However, it turns out that the value for

√〈r2〉 is strongly model-dependent
since it changes considerably as t is varied or alternative distributions are used. It
was shown that the potential difference between the two muonic states connected by
the Kα transition can be well approximated by the analytical expression Brke−αr ,
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where B , k and α are fitting constants and that the corresponding expectation value

〈
rke−αr

〉= 4π

Ze

∫
ρN(r)r

ke−αr r2 dr, (6.21)

called the Barrett moment, is largely insensitive to the details of the assumed nu-
clear density distribution [29], e.g. the skin thickness, and therefore called model-
independent. Hence, an equivalent Barrett radius Rkα is introduced, by the implicit
relation

〈
rke−αr

〉= 3

R3
kα

∫ Rkα

0
rke−αr r2 dr. (6.22)

Rkα is thus the radius of a sphere of constant charge density that has the same Bar-
rett moment as the nucleus under investigation. Usually the limited knowledge of
the nuclear polarization correction is reported as the dominant systematic error of
the result. However, it is in most cases not clearly discussed or not even known,
how much the polarization correction might change along a chain of stable iso-
topes. Hence, the term “model-independent” has to be taken with care. This leads to
difficulties concerning error propagation in the King plot.

Finally it should be mentioned that there is also another usage of Eqs. (6.19a),
(6.19b), namely the extraction of isotope shift parameters in one transition if they
are known in another transition of the ion or atom. This is often useful if these can be
estimated to good accuracy in a particular transition but this transition does not fulfill
the requirements for on-line spectroscopy of rare isotopes, it might lack efficiency
for example. In that case both transitions can be measured for stable isotopes—here
efficiency is usually not an issue—

δ̃ν
AA′
IS,1 = KMS,1 + F1δ̃

〈
r2

c

〉AA′
(6.23)

δ̃ν
AA′
IS,2 = KMS,2 + F2δ̃

〈
r2

c

〉AA′
(6.24)

and the unknown charge radii can be eliminated in one equation, e.g.

1

F1

(
δ̃ν
AA′
IS,1 −KMS,1

)=+δ̃〈r2
c

〉AA′
(6.25)

δ̃ν
AA′
IS,2 =

(
KMS,2 − F2

F1
KMS,1

)
+ F2

F1
δ̃ν
AA′
IS,1. (6.26)

Thus, a plot of the mass-scaled isotope shift in one transition against that in the
other transition should exhibit a straight line with slope F2/F1 and ordinateKMS,2−
(F2/F1)KMS,1. Equation (6.26) can also be used to check the internal consistency
of isotope shifts in different transitions. Of course, also this technique relies on the
existence of at least three stable isotopes or measurements of short-lived isotopes
that are produced in larger quantities in more than one transition.
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6.2.3.2 Semi-empirical Determination of the Field-Shift Factor

Since the field shift factor is proportional to�|Ψ (0)|2 it can be extracted from other
observables that are also sensitive to this probability density. Therefore either the
energy of ns states (n = principal quantum number of the state) or the hyperfine
splitting for an s state in an isotope with well-known nuclear magnetic moment
can be used. Rydberg states in many-electron systems show a deviation from the
Rydberg formula that is usually taken care of by introducing the so-called quantum
defect ξ . The corresponding formula for the energy of the Rydberg atom is then

En =EI − RM

(n− ξ)2 , (6.27)

where EI is the ionization energy of the element, RM the mass-reduced Rydberg
constant for the respective isotope with mass M . The quantum defect ξ arises from
the fact that the valence electron has some probability being inside the shell of the
other electrons and therefore feels more of the unscreened charge of the nucleus.
It varies with angular momentum and is largest for s electrons due to the missing
centrifugal barrier. For high-lying states the quantum defect is almost constant, but
it varies slightly for lower states. Thus, the probability density at the nucleus can be
extracted by the Goudsmit-Fermi-Segrè formula

∣∣Ψ (0)∣∣2
ns
= 1

πa3
0

ZiZ
2
a

n3
a

(
1− dξ

dn

)
, (6.28)

where a0 is the Bohr radius, Zi = Z for s electrons and Za = 1 for neutral atoms,
Za = 2 for singly charged ions etc. na = n − ξ is the effective quantum number
after subtraction of the quantum defect ξ . To apply this formula, one must generate
a table of level energies starting from a level at low n. From the energies one obtains
the effective quantum numbers

na =
√
R∞
E′
ns

=
√

R∞
EI −Ens (6.29)

and thus the variation of the quantum defect with principal quantum number ξ(n).
In order to calculate the term in parentheses in Eq. (6.28), one can use the procedure
described by Kopfermann [30]

dξ

dn
=

dξ
dE′
ns

dξ
dE′
ns
− 2 na

E′
ns

, (6.30)

where the derivative dξ
dE′
ns

is determined from a linear or quadratic fit to the data of

ξ(E′
ns) and the derivative is taken at a low value of n.
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Another possibility to determine the probability density |Ψ (0)|2ns is through the
hyperfine splitting factor. The a factor of an ns electron for example is given by [30]

ans = 8π

3
hcR∞α2a3

0

∣∣Ψ (0)∣∣2
ns
Fr(j,Zi)(1− εBR)(1− εBW)

μI

IμB
.

R∞ is the Rydberg constant in cm−1, μB the Bohr magneton, μI is the nuclear
magnetic moment and α is the fine-structure constant. Fr is a radial integral, εBR
and εBW are the Breit-Rosenthal and Bohr-Weisskopf correction for the finite nu-
clear charge and nuclear magnetic moment distribution, respectively. Measuring the
hyperfine splitting in such a state allows to extract |Ψ (0)|2ns . If possible, both tech-
niques should be applied in order to check the consistency of their results and might
then also be compared to ab-initio calculations.

6.2.3.3 Ab-initio Calculations of Mass Shift and Field Shift Constants

Mass-shift and field shift constants can in principle be obtained from atomic struc-
ture calculations. However, these many-body calculations must reliably treat all
electron-electron correlations. As discussed above, this becomes dramatically com-
plex for many-electron systems, but for few-electron systems (not more than three),
high-accuracy calculations are feasible nowadays. For two electrons at positions �r1
and �r2 bound to a nucleus at position �R0 the stationary Schrödinger equation includ-
ing the nuclear motion reads

H Ψ (�r1, �r2) =
[
− �

2

2M
�∇2

0 −
�

2

2me

( �∇2
1 + �∇2

2

)
(6.31)

+ 1

4πε0

(
− Ze|�r1| −

Ze

|�r2| +
e2

|�r1 − �r2|
)]
Ψ (�r1, �r2)

= EΨ (�r1, �r2). (6.32)

The last term of the potential energy, representing the electron-electron repulsion
term, makes the Hamiltonian nonseparable and, thus, the Schrödinger equation can-
not be solved exactly. In order to apply numerical methods, it is usually transformed
into the CM frame and relative coordinates, thus removing the explicit appearance
of R0. One obtains

H =− �
2

2me

(
�∇2

1 + �∇2
2 +

μ

M
�∇1 · �∇2

)
+ 1

4πε0

(
−Ze

2

|�r1| −
Ze2

|�r2| +
e2

|�r1 − �r2|
)
, (6.33)

with the additional mass-polarization term (μ/M) �∇1 · �∇2, representing the corre-
lation of electron momenta as discussed above. Here μ = meM/(me +M) is the
electron reduced mass and M the mass of the nucleus. The Hamiltonian is divided
into the dominant nuclear-mass independent termH0 and the mass polarization term

H =H0 +H ′ =H0 + ηHMP (6.34)
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with the perturbation parameter η= μ/M and

HMP =− �
2

2me

�∇1 · �∇2. (6.35)

The solution to this many-body problem is a kind of textbook example and therefore
we will just roughly sketch the way it is handled. For more details see, e.g. Refs.
[23, 31, 32].

This problem is treated in perturbation theory using the following approach:
First, approximate solutions for H0 are constructed using a variational approach
in an appropriate basis set. Here, a basis already suggested by Hylleraas in 1929 is
usually used [33]. It provides a set of functions that are explicitly correlated, since
they include, for example in a three-electron system, products of powers of rj11 , r

j2
2 ,

r
j3
3 , rj12

12 , rj13
13 , and rj23

23 . The constructed solution ofH0 must have been converged to
at least 10 digits in order to provide the required accuracy in the next steps. Based on
the calculated wave functions, perturbation theory is used to evaluate the contribu-
tion of the mass polarization term H ′, as well as relativistic and QED contributions.
Lowest order relativistic corrections are of order α4 (including the α2 already exist-
ing in the Rydberg constant) while QED corrections start with the order of α5. This
leads to an expansion of the energy of each state in a double power series of η and
of α

E(α,η) = mc2α2[E (2,0) + ηE (2,1) + η2E (2,2)
]

+mc2α4[E (4,0) + ηE (4,1)]+mc2α5[E (5,0) + ηE (5,1)]
+mc2α6[E (6,0) + ηE (6,1)]+mc2α7E (7,0) + · · ·

+ Ze
2

6ε0

〈
r2

c

〉∑
i

〈
δ3(ri )

〉
, (6.36)

where the η-dependent terms are responsible for the mass shift and the last term is
the finite nuclear size contribution. Here, δ3(ri ) is the three-dimensional δ-function
for the coordinate of the i-th electron and its expectation value 〈δ3(ri )〉 is the corre-
sponding electron probability density at the nucleus.

Currently, QED and relativistic contributions are calculated up to the order of
α6 and α7 terms are approximated using hydrogenic wavefunctions. Some contri-
butions and their dependence on α are listed in Table 6.1. Calculating all terms pro-
vides the level energies from which the total transition energies can be determined.
In principle, this would allow for an absolute determination of 〈r2

c 〉 by a comparison
with the measured transition frequency. However, the theoretical uncertainty of the
transition energy is dominated by mass(η)-independent QED corrections of order α5

and is on the same order as the finite size effect (≈10 MHz). Fortunately, the mass-
independent terms cancel in the calculation of the isotope shift and, thus, δνMS can
be calculated to much higher precision. While two-electron atoms have been treated
with this approach since about 1992 [35, 36], calculations in three-electron systems



246 W. Nörtershäuser and C. Geppert

Table 6.1 Contributions to the mass shift term in isotope shift measurements listed as a function
of the fine-structure constant α and the electron reduced-mass to atomic mass ratio η= μ/M
Contribution to Term Dependence

E (2,0) Nonrelativistic energy Z2α2

E (2,1) Mass polarization Z2α2(μ/M)

E (2,2) Second-order mass polarization Z2α2(μ/M)2

E (4,0) Relativistic corrections Z4α4

E (4,1) Relativistic recoil Z4α4(μ/M)

E (5,0) Anomalous magnetic moment Z4α5

E (2,0) Hyperfine structure Z3α2gIμ
2
0

E (3,0) Lamb shift Z4α5 lnα + · · ·
E (3,1) Radiative recoil Z4α5 lnα(μ/M)

– Finite nuclear size Z4α2〈r2
c 〉

have reached the required accuracy just at the turn of the last century [37]. Since
then, the accuracy of the calculations was increased by about two orders of magni-
tude [23]. As an example, the different contributions from the mass-dependent terms
to the isotope shift of 11Li relative to 6Li are listed in Table 6.2 [23]. Not included in
the corrections discussed above are nuclear polarization contributions. Nuclei which
have a large polarizability—indicated by a large low-lying E1 dipole strength in the
nuclear excitation spectrum—can be influenced by the electric field of the atomic
shell. This, in turn, causes a contribution to the level energies and therefore to the
isotope shift. The corresponding Feynman diagram is shown in Fig. 6.3. This ef-
fect cannot be neglected for 11Li [38] and is particularly strong for 11Be [32], the
nucleus with the largest dipole strength of all known nuclei.

Using the calculated mass shifts δν6,A
MS , the change in the RMS charge radius

between the isotope with mass number A and the reference isotope (in this example:
6Li) can be obtained from the measured isotope shifts δν6,A

IS using the relation

δ
〈
r2

c

〉6,A = δν
6,A
IS − δν6,A

MS

F
. (6.37)

In order to calculate the RMS charge radius 〈rc〉 the charge radius of at least one
isotope in the isotopic chain must have been determined by a different technique. In
the case of lithium the two stable isotopes, 6,7Li, were investigated by elastic elec-
tron scattering in the 1960’s and 70’s. A recent analysis of the world scattering data
showed that the 6Li scattering data is more reliable than that of the more abundant
isotope 7Li and a charge radius of Rc(

6Li) = 2.59(4) fm was extracted [39]. This
allows to determine the charge radii of all lithium isotopes according to

Rc
(ALi

)=
√
〈
r2

c

〉(6Li
)+ δν

6,A
IS − δν6,A

MS

F
. (6.38)
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Table 6.2 Contributions to the mass shift δν6,11
MS,Theory of 11Li relative to 6Li in the 2s2S1/2 →

3s2S1/2 transition. The mass-dependent terms are calculated using the massM listed in the first row
for 11Li and for 6LiM = 7.016 003 425 6(45) amu. The unit of the electronic factor F is MHz/fm2.
All other values are in MHz. To demonstrate the degree of agreement between the independent
calculations by Yan & Drake and Puchalski & Pachucki, those values which are slightly differing
between the groups are listed

Term 11Li

M (amu) 11.04372361(69)a

μ/M 36 559.175 4(27)b

(μ/M)2 −4.761 9

α2 µ/M 0.055 0c

0.053 7(4)d

α3μ/M −0.154 8(21)

α4μ/M −0.021 5(63)c

−0.026 8(90)d

νpol 0.039(4)

Total 36 554.323(9)c

36 554.325(9)d

F −1.570 3(16)

a[34]
bUncertainties for this line are dominated by the nuclear mass uncertainty
cCalculation by Puchalski and Pachucki
dCalculation by Yan and Drake

Fig. 6.3 Feynman diagram representation of the nuclear polarizability correction. Photon ex-
change (wave) with the electron (solid line) leads to a dipole excitation of the nucleus N into
an excited state N∗

The field-shift factor F required in this calculation can also be obtained from the
constructed wavefunctions using

F = Ze
2

6ε0

N∑
i=1

[〈
δ3(ri )

〉
f −

〈
δ3(ri )

〉
i

]
, (6.39)
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with the expectation values of the δ-function (= electron probability density) 〈·〉i,f
in the initial (i) and final (f) state of the transition. Please note that this also in-
cludes changes of the core electron density induced by the transition of the valence
electron.

6.3 Nuclear Theory: Charge Radii Variations Along Isotopic
Chains

In this section, we will shortly discuss possible reasons for changes of the nuclear
charge radius along an isotopic chain. These changes are driven, amongst other ef-
fects, by the increase in nuclear volume, deformation, or clustering of the nuclei.

6.3.1 Spherical Nuclei

For spherical nuclei that have equally distributed protons and neutrons, the volume
occupied by the protons increases proportional to the mass numberA. As it has been
discussed in Sect. 6.2.2, Eq. (6.16), this leads to a liquid-drop model expectation for
the “standard isotope shift” (adding one neutron to a nucleus) of

δ
〈
r2

c

〉
sph ≈

d〈r2
c 〉sph

dA
δA= 2

5

δA
3
√
A
r2

0 . (6.40)

Instead of the simple liquid-drop model radius one can use the radius from the more
sophisticated finite-range droplet model by Myers et al. [40, 41], which gives a much
better approximation of the standard isotope shift [42]. For heavy nuclei, the term
A−1/3 is almost constant along an isotopic chain and the increase in charge radius is
therefore approximately linear. This is illustrated in Fig. 6.4 which shows changes
of the mean-square charge radii for elements in the region of the doubly magic
nucleus 208Pb, which is expected to be spherical as all doubly magic nuclei. The
straight lines that are drawn in Fig. 6.4 are the corresponding expected variations
according to the droplet model. All elements in this region have a series of isotopes
that indeed follow this trend to a very good approximation. However, there are clear
deviations from this linear behavior towards neutron-deficient isotopes and at the
N = 126 shell closure. The neutron-deficient isotopes show a more or less sudden
increase in charge radius. This was first discovered for the mercury isotopes [43],
where a large odd-even staggering was observed for isotopes lighter than 186Hg.
Most recently the behavior of the neutron-deficient polonium isotopes was studied
[44] and a relatively smooth and early deviation from the straight line compared
to the other elements in this region was observed. The corresponding increase in
charge radius is related to a change from a spherical to a deformed one as will be
discussed in the next section. The behavior at the N = 126 shell closure is still not
fully understood and will be a topic for investigations in the years to come.
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Fig. 6.4 Changes of the mean-square nuclear charge radii in the lead region. A constant offset was
used for all isotopes of one element in order to separate the data points of the different elements,
which would otherwise lay on top of each other. Thus, the δ〈r2

c 〉 axis is only to be taken relative.
The straight lines represent the prediction from the spherical finite-range droplet model [42]. The
kink at the N = 126 shell closure is clearly visible. Neutron-deficient isotopes of most elements
exhibit also a deviation from this line due to deformation effects. Figure taken and modified from
[44] including data from [45]

6.3.2 Nuclear Deformation

A spherical nucleus of constant density exhibits the smallest 〈r2
c 〉 of all nuclei with

identical density and volume. In order to estimate the change in mean-square charge
radius with increasing deformation, a quadrupolar deformed nucleus with sharp
edge at radius

Rdef =R0
(
1+ β2Y20(θ)

)
/N (6.41)

is considered. Here, Y20(θ) is a spherical harmonic function, β2 the deformation
parameter and N is introduced for volume normalization. The corresponding mean-
square charge radius is calculated to be

〈
r2〉

def =
〈
r2〉

sph

(
1+ 5

4π

〈
β2

2

〉)
(6.42)

and its change in lowest order can be separated into a volume and a shape term

δ
〈
r2〉

def = δ
〈
r2〉

sph +
5

4π

〈
r2〉

sphδ
〈
β2

2

〉
. (6.43)

This formula can be generalized for nuclei deformed in a more complicated way by
replacing β2Y20 with a sum over all relevant spherical harmonics βiYi0. A typical
quadrupole deformation is β2 = 0.3. The second term becomes 5〈r2〉sph0.32/4π ≈
0.04〈r2〉sph. Even though 4 % does not seem to be much, it is a huge effect compared
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to the relative size of the volume effect for a spherical nucleus generated by a single
neutron, obtained from the standard isotope shift in Eq. (6.16) and Eq. (6.15)

δ〈r2
c 〉A,A−1

sph

〈r2
c 〉sph

= 1

3A
, (6.44)

which is already below the 1 % level for masses above 30 amu and for example in
the lead region constitutes only a 0.16 % effect. This demonstrates the sensitivity of
δ〈r2

c 〉 and thus the isotope shift to nuclear-shape changes.
A deformed nucleus with spin shows also a change in the electronic structure

caused by the electric hyperfine structure. Referring to the lecture note by Neugart
and Neyens [16] on nuclear moments, it should be noted that the hyperfine splitting
is also sensitive to the deformation parameter 〈β2〉. While charge radius changes are
only an indication for a variation of 〈β2

2 〉, its sign can be directly extracted from the
hyperfine structure. A comparison between 〈β2〉 from the hyperfine structure and√
〈β2

2 〉 can reveal the nature of the deformation. A nucleus is statically deformed if
the minimum of its energy appears at a finite deformation 〈β2〉. If the minimum is
relatively flat, i.e. the slope around the minimum is small, the shape-restoring forces
are weak and the nucleus is “soft” against deformation. Contrary, a steep minimum
indicates a stiff nucleus. In a soft nucleus collective vibrations can appear that do
not contribute to the static deformation since their time average is zero. However,
they do cause a rise of the mean-square nuclear charge radius, since the expectation
value of 〈β2

2 〉 is different from zero. This can be used to separate the contribution
from the static deformation ∝ 〈β2〉2 and the dynamic contribution to the nuclear
charge radius, by simply writing

〈
β2

2

〉
︸︷︷︸

charge-radius

= 〈β2〉2︸ ︷︷ ︸
static

+ 〈
β2

2

〉− 〈β2〉2︸ ︷︷ ︸
dynamic

. (6.45)

This identity has to be interpreted as follows: The left side is the information from
the charge radius measurement and the first term on the right the expected contri-
bution of the static deformation obtained from the hyperfine structure to the change
in mean-square charge radius. If the two do not fit together, the second term must
be different from zero and constitutes the contribution of a dynamic deformation.
Thus, if a change appears in δ〈r2

c 〉 that is considerably larger than expected using
〈β2〉2 obtained from the hyperfine structure, one of the isotopes must have a siz-
able amount of dynamic deformation. This has been observed, e.g. in the yttrium
isotopes around neutron number N = 60 [46], a part of the nuclear chart that is
called the “region of sudden onset of deformation”. In the isotope 88Y for example,
δ〈β2〉2 extracted from the B-factor in the hyperfine structure is more than 10 times
smaller then the corresponding δ〈β2

2 〉 required to relate the increase in charge radius
to the deformation parameter. A similar behavior is observed for yttrium isotopes
with N < 60, whereas isotopes with N ≥ 60 fulfill the relation δ〈β2

2 〉 ≈ δ〈β2〉2. It
should be noted that this dynamical deformation can also contribute to nuclei that
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are on average spherical. It is for example used in [42] to explain the kink of δ〈r2
c 〉

at the magic numbers N = 50 and N = 82.

6.3.3 Clustering and Halos in Light Nuclei

Many light nuclei can be described in a way that nucleons merge to smaller entities,
called clusters. A more detailed description and background of this topic is given
by Martin Freer in this volume under the title “Clustering in light nuclei; from the
stable to the exotic” [47].

The most important clusters in these descriptions are the α-cluster (4He++), the
deuteron (d = 2H+), and the triton (t = 3H+). The nucleus 6Li for example is built
from an α-cluster and a deuteron, similarly a triton and an α make up 7Be. An indi-
cation that there is some truth in this picture is the fact that one needs less energy to
release a deuteron from 6Li than a single proton or neutron. Similarly, the beryllium
isotopes with A ≥ 9 are composed of two α-clusters and additional neutrons. This
clustering can be regarded as the reason for the non-existence5 of 8Be, since there
is no “glue” that “connects” the two α’s. In 9Be a single neutron provides sufficient
binding but the potential minimum is rather flat according to Fermionic Molecu-
lar Dynamic Calculations [48]. The “steepness” of the minimum increases for 10Be
and, thus, the average distance of the α’s is reduced resulting in a smaller charge
radius. The determined charge radii along the lithium and beryllium isotopic chains
are shown in Fig. 6.5. The strong trend towards smaller charge radii with increasing
neutron number is obvious. However, a striking difference is observed for 11Li and
11Be: the charge radius suddenly increases for these isotopes, which are known as
“halo” isotopes. A halo nucleus consists of a compact nuclear core with the usual
nuclear matter density that is surrounded by a dilute cloud of neutrons [49]. This is
illustrated for the case of 11Li in Fig. 6.6(a). The halo is formed by two neutrons
and the RMS matter radius obtained from the wavefunction of the halo-neutrons is
comparable to the matter radius of the stable nucleus 208Pb. The increase in charge
radius from 9Li to 11Li can be largely attributed to a pronounced recoil effect of
the 9Li core-nucleus in 11Li. The momenta of the two neutrons can be described in
the so-called T-system as indicated in Fig. 6.6(b). Assuming a charge radius of the
9Li core-nucleus in 11Li to be identical with that of the free 9Li nucleus, the charge
radius of 11Li arising purely from the motion of the 9Li-core in the center-of-mass
system can be written as

Rc
(11Li

)=
√
R2

c

(9Li
)+R2

c-CM, (6.46)

with Rc-CM = 2
11Rc-nn being the distance between the core and the center of mass.

From this formula it is obvious that the change in the mean-square charge radius is

5To be more specific: 8Be is unbound and does only exist as a resonance in the continuum with a
width of about 6 eV corresponding to a half-life of approximately 10−16 s.
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Fig. 6.5 Nuclear charge radii of lithium and beryllium isotopes obtained from isotope shift mea-
surements [50, 51]. Error bars are based on the isotope shift uncertainty only. The additional sys-
tematic uncertainty caused by the reference charge radius uncertainty is indicated by the dashed
lines (Li) and the shaded area (Be), respectively

Fig. 6.6 (a) Illustration of the uncommon structure of a halo nucleus for the example 11Li. The
wave function of the two neutrons outside the 9Li core nucleus expands to large radii and exhibits
an RMS matter radius comparable to that of the heaviest stable nuclei like 208Pb illustrated below.
(b) The so-called T-system is characterized by the distances between the core and the center-of
mass of the two neutrons Rc-nn and the two halo neutrons Rnn. In this basis, the nuclear observables
accessible by laser spectroscopy—i.e. charge radius, electric quadrupole moment and magnetic
dipole moment—are calculated easiest. (c) 11Li correlation density in the T-system. See text for
more information. (Figure (c) reprinted from N.B. Shulgina et al.: 11Li structure from experimen-
tal data, Nucl. Phys. A 825, 175–199, http://dx.doi.org/10.1016/j.nuclphysa.2009.04.014.©2009
Elsevier)

http://dx.doi.org/10.1016/j.nuclphysa.2009.04.014
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Fig. 6.7 Different contributions to the charge radius of 6He (solid line, squares) and 8He (dashed
line, dots) as calculated in the Gamow Shell-Model (GSM) and comparison with experimental
charge radii (EXP) and ab-initio calculations using Greens-Function’s Monte-Carlo calculations
(GFMC) and the No-Core Shell Model (NCSM). The inset shows theoretical (GSM) and experi-
mental RMS neutron radii. Figure taken from [54]. (Reprinted with permission from Phys. Rev. C
84 84051304(R) Copyright 2011 American Physical Society)

just the mean-square distance between the core and the center of mass

R2
c-CM =R2

c

(11Li
)−R2

c

(9Li
)= δ〈r2

c

〉
. (6.47)

Using the experimental values for 9Li and 11Li as obtained in [39] results in Rc-nn =
6.1 fm. The distance between the two neutrons, denoted Rnn, can be extracted from
two-neutron interferometry data obtained in nuclear breakup reactions and results
in Rnn = 6.6 ± 1.5 fm [52]. According to a three-body model of 11Li that has been
optimized to agree with all experimental observables of 11Li, the RMS distances
between the core and the center of mass of the two neutrons Rc-nn = 5.55 fm and
between the two halo-neutrons Rnn = 6.69 fm are almost equal [53]. Consequently,
the 11Li correlation density in the T-system obtained from this model, plotted in
Fig. 6.6(c), shows a peak at about 4 fm in both distances. A small contribution of
a cigar-like configuration, i.e. with the two neutrons on opposite sides of the core
nucleus, is observable as a weak cloud at Rnn ≈ 6 fm and Rc-nn ≈ 2 fm.

There are several subtle effects also contributing to the size of the charge ra-
dius of such a halo nucleus. They are deconvoluted in Fig. 6.7 for the two-neutron
and four-neutron halo nuclei 6He and 8He. The radii of these nuclei were calcu-
lated in the Gamow Shell-Model [54], based on the point-proton radius of 4He. The
point-proton radius is the radius of the proton distribution assuming the protons
(and neutrons) being point-like particles. Similar as in 11Li, the additional neutrons
in the halo cause a motion of the α-cluster in the center-of-mass system. This leads
to an increase of the charge radius, which is slightly smaller for 8He than for 6He
due to the more “balanced” configuration of the four neutrons in 8He compared to
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the two neutrons in 6He. Additionally, the anomalous magnetic moment of the halo
neutrons orbiting in the vicinity of the α cluster induces an electric charge density
which contributes with a negative sign to the charge density in the nuclear center.
This so-called spin-orbit effect is stronger in 8He than in 6He and since its contri-
bution is negative the effect even enhances the difference between 6He and 8He.
The size of the core-swelling contribution, caused by a small structural change in
the central α-cluster, amounts to roughly 5 % and 7 % increase of Rc(α) in 6He
and 8He [54], respectively, according to ab-initio Green’s-Function Monte-Carlo
calculations. Finally, the finite size of the proton and the neutron must be taken into
account.

All these contributions can be added to the point-proton radius of a nucleus 〈r2
p 〉

according to

〈
r2

c

〉= 〈
r2

p

〉+
(
R2

p +
3�2

4M2
pc

2

)
+ N
Z
R2

n +
〈
r2

so

〉+ 〈
r2

mec

〉
(6.48)

with Rp = 0.8775(51) fm [55, 56] being the charge radius of a proton, Rn =
−0.1161(22) fm [55, 56] the neutron charge radius and Mp the mass of the pro-
ton. More subtle effects are also included in Eq. (6.48), namely the Darwin-Foldy
term (second term within the parentheses), accounting for the “Zitterbewegung” of
the proton due to virtual particle-antiparticle pairs that surround the ‘bare’ proton.
Even a hypothetical point proton, would thus acquire a mean-square charge radius
of 3�2/(2Mpc)

2 = 0.033 fm2. The spin-orbit term mentioned above is denoted 〈r2
so〉

and additionally one has to take into account meson-exchange currents 〈r2
mec〉 be-

tween the nucleons, which also contribute to the charge radius.
The most prominent neutron-halo nuclei are 6,8He, 11Li, and 11Be and the laser

spectroscopic determination of their charge radii has been achieved within the last
decade, based on new experimental techniques presented in the next section and the
ab-initio atomic structure calculations discussed above. Additionally, charge radii
measurements of light neon isotopes are presented since 17Ne is the only proton-
halo candidate that has been addressed by laser spectroscopy so far. It should be
mentioned that the investigation of halo nuclei is a very active field of research, the-
oretically as well as experimentally. Here we address only laser spectroscopy, but
high-precision Penning-trap mass measurements of these exotic nuclei have con-
tributed considerably to the results discussed here since they were absolutely essen-
tial for the mass shift calculations [18]. We refer to some recent review articles on
halo nuclei for further studies, e.g., [57, 58].

6.4 Measuring Charge Radii of Halo Isotopes

6.4.1 The Challenge of Halo Nuclei

During the last decade tremendous progress was achieved in the determination of
the ground state properties of the lightest elements from hydrogen up to beryllium
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by laser spectroscopy studies at on-line facilities. This region of the nuclear chart
is of great interest since the high-accuracy data from laser spectroscopic investiga-
tions provide important benchmarks for ab-initio nuclear structure theories. Such
calculations, performed, e.g., with the Quantum Monte-Carlo or the No-Core Shell
Model approach can only be carried out for the lightest nuclei up to 12C. Moreover,
this region is the realm of halo nuclei as discussed above.

In the lightest elements, the mass shift exceeds the field shift contribution to the
nuclear charge radius by four to five orders of magnitude. Hence, the isotope shift
has to be measured with an accuracy of 1–10 ppm. For helium and lithium the field
shift contribution to the isotope shift is on the order of 1 MHz whereas the mass shift
between 8He and 4He is about 65 GHz. Hence, the isotope shift has to be measured
to an accuracy of about 100 kHz, which corresponds to the Doppler shift of near-UV
light at 389 nm experienced by an atom traveling at a velocity of only 4 cm/s. This
has to be compared with the recoil velocity of a 4He atom after the absorption or
emission of such a single UV photon, which is about 26 cm/s and therefore already
6 times as large. This, in combination with the fact that the halo nuclei are produced
only in minute quantities and—once produced—decay after a time considerably less
than a second, is the challenge of laser spectroscopy on halo nuclides. So far radioac-
tive isotopes of helium, lithium and beryllium have been studied and for each ele-
ment a dedicated spectroscopic technique was required. For helium, the atoms were
cooled down to low temperatures in a magneto-optical trap (MOT) and kept at this
temperature during the spectroscopic investigations [59, 60], whereas for lithium a
two-photon excitation was chosen that is in first order Doppler-free and therefore
independent of the atomic motion [61]. Contrary, for the beryllium isotopes an ap-
proach turned out to be appropriate that actually facilitates the Doppler shift of fast
atoms instead of avoiding it [50, 51]. These different techniques will be briefly de-
scribed in the following sections. Additionally, beryllium ions have been captured
in a radio-frequency trap, laser cooled and investigated using an microwave-optical
double-resonance technique [62–64]. Previously, radioactive lithium and beryllium
isotopes were studied with a combination of laser spectroscopy and nuclear mag-
netic resonance with β-asymmetry detection in order to extract the nuclear mo-
ments [65].

6.4.2 Helium: Spectroscopy on Cold and Trapped Atoms

The isotope 6He was the first halo isotope for which a nuclear charge radius was
determined by laser spectroscopy [59]. 6He was produced at the ATLAS accelera-
tor, Argonne, in a transfer reaction of a 7Li beam on carbon: 7Li (12C, 13N) 6He.
Later at GANIL, Caen, spallation of a 13C beam impinging on a hot graphite tar-
get was used to produce 6He and 8He simultaneously at rates of about 5 × 107 and
1×105 atoms/s, respectively [60]. Singly charged ions were produced and delivered
into a low-radiation area, where the beam was stopped in a thin hot graphite foil and
released as neutralized helium. In both cases, the gaseous reaction products were
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collected with a turbomolecular pump and the exhausted material mixed with kryp-
ton carrier gas and fed into a gas discharge cell. The gas discharge was used for an
excitation of the helium atoms into the metastable 1s 2s 3S1 state, because laser ex-
citation from the ground state would require a laser with a wavelength of λ < 53 nm,
which is not available. Out of the metastable state, which has a lifetime of several
hours, laser excitation can be performed with infrared light at 1083 nm into the
1s 2p 3P0,1,2 states or into the 1s 3p 3P0,1,2 states in the near ultraviolet region at
389 nm. Both transitions were employed for the measurement of the charge radius.
The infrared transition served for laser cooling, capturing and trapping, and the ul-
traviolet transition was applied for the isotope shift measurement. The principle of
laser cooling and trapping will be briefly described in the following paragraphs.

During the absorption process of a photon by an atom, energy and momen-
tum conservation must be obeyed. The energy of the photon is used to excite
an electron in the atom into an energetical higher orbital and the photon mo-
mentum �p = ��k leads to a change of the velocity of the atom. When we con-
sider first an atom with mass M at rest in the laboratory frame absorbing a
photon, the momentum conservation requires that the atom acquires a velocity
of υ = �k/M = h/λM = hν/Mc or β = υ/c = Eγ /Mc2. A 6He atom excited
with an ultraviolet photon (Eγ ≈ 3 eV) has therefore a recoil velocity of roughly
υ ≈ 3/6 × 10−9 c = 5 × 10−10c ≈ 15 cm/s. Please note that this velocity change
of the 6He atom—caused by a single photon—leads to a Doppler shift of approxi-
mately �νDoppler ≈ ν0β ≈ 8× 1014 · 5× 10−10 = 400 kHz for the next photon that
will be absorbed. Thus, the velocity of the helium atoms must be very well under
control to avoid large systematic uncertainties due to Doppler shifts. However, the
change of the velocity can also be employed to control the motion of the atom. If a
steady stream of photons is directed against an atom in motion and the frequency of
the photons is in resonance with an allowed and fast transition of the atom, photons
will be repetitively absorbed from one direction and the atom is gradually slowed
down. After each absorption, the atom must of course get rid of the excitation en-
ergy and therefore another photon is emitted. But since the spontaneous emission is
on average isotropic, the net momentum transferred to the atom in a large number
of cycles is given by

� �patom =
N∑
i=1

��klaser +
N∑
i=1

��kemission

︸ ︷︷ ︸
≈0

=N��klaser. (6.49)

Consequently, the laser exerts a force on the atoms in the direction of the laser beam.
The condition for this scenario is that the laser frequency stays in resonance during
the process. This can be maintained either by quickly tuning the laser frequency or
adjusting the atom’s resonance frequency using external fields. The first case leads
to the deceleration of a bunch of atoms for which the resonance condition is fulfilled
whereas other atoms are not cooled. Thus, only a part of the beam is decelerated.
If the atomic resonance is tuned along the interaction length, e.g., by applying a
varying magnetic field and employing the Zeeman effect in the atomic transition, all
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Fig. 6.8 Experimental setup for the isotope shift measurements of He isotopes (left) as explained
in the text. The upper plot (a) at the right shows the very first spectrum recorded solely with the
first 8He atom in the MOT obtained within 0.4 s. The lower figure (b) shows an integrated spectrum
over 30 atoms, resulting in a line center fitting uncertainty of 110 kHz and a χ2 = 0.87 assuming a
simple Gaussian profile. Figure modified from [18], ©The Royal Swedish Academy of Sciences.
Reproduced by permission of IOP Publishing. All rights reserved

atoms can be addressed with the laser beam. This is the way how it was used in the
helium isotope shift measurement.

The experimental setup is depicted in the left part of Fig. 6.8. It shows the pro-
duction process on the left and the gas discharge cell, from which the atoms are
released at an average beam velocity of about 1000 m/s into the Zeeman slower. At
the entrance of the Zeeman slower, laser beams intersect the atomic beam perpen-
dicularly for transversal cooling. The Zeeman slower is a solenoid with a magnetic
field along its axis that varies in a way that the atomic resonance condition is main-
tained while the atoms are being slowed down and therefore experience a strongly
decreasing Doppler shift of the laser light. This effect is compensated by a decreas-
ing magnetic field, that leads to a smaller Zeeman splitting. Within a well-designed
Zeeman slower, the atoms can be cooled down to very small velocities. Atoms leav-
ing the slower are cold enough that they can be captured in the shallow potential of
a magneto-optical trap.

The operating principle of a MOT is described in detail for example in [66, 67].
Briefly summarized it works like this: six red-detuned laser beams are oriented along
the axes of a cartesian coordinate system in three pairs of counterpropagating beams.
This provides a frictional force on the atoms and slows them down (optical molasse),
but does not provide trapping since the force has no spatial dependence. In order to
trap the atoms in the center of the trap the laser beams are circularly polarized and a
quadrupolar magnetic field is applied that rises linearly from the center of the trap,
produced e.g. by a pair of anti-Helmholtz coils. The magnetic field shifts the mF
magnetic substate levels in the atom and leads to a position-dependent absorption
probability. With the right choice of circularly polarized light and red detuned lasers,
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the atoms come into resonance with a laser beam only if they drift towards this laser
out of the trap center. In this way, a restoring force is realized and the atom can be
captured and cooled down to the Doppler limit

kTDoppler = �Γ

2
, (6.50)

where Γ is the decay rate of the excited state in the two-level system. It corresponds
to typical temperatures in the range of a few 100 µK. Trapping times are limited by
collisions with residual gas atoms that transfer sufficient momentum to the atom to
leave the shallow trap potential. Another loss mechanism that is generally present
is the interaction between the trapped atoms. However, in the helium experiments
usually only a single atom was kept within the trap and therefore this process can
be neglected.

The MOT in the helium experiment was operated in a capture-mode with the
cooling lasers turned on until an atom was detected inside the trap by the strong rise
of scattered laser light. The fluorescence rate of a single atom reached a signal-to-
noise ratio of about 10 after an integration time of about 50 ms. This increase was
the trigger for starting the spectroscopy mode until the captured atom was lost from
the trap either by radioactive decay or a collisional loss. Trapping rates were on the
order of 20,000 6He atoms/h and 30 8He atoms/h.

A problem for precision spectroscopy is the presence of the cooling laser dur-
ing the spectroscopy process. The electronic levels of an atom in a laser beam are
slightly shifted due to the influence of the varying electric field. This effect is called
AC-Stark shift and increases linearly with intensity. It leads to a shift of the reso-
nance transition and—since the intensity varies over the cross section of the laser
beam—is usually also accompanied by a broadening of the observed line shape,
called AC-Stark broadening. The relatively intense fields of the cooling laser in a
MOT can therefore have a substantial influence on the spectroscopic result if both
lasers are applied simultaneously. On the other hand, turning off the cooling laser
during spectroscopy, leads to systematic cooling or heating processes correlated
with the detuning of the spectroscopy laser. This will also lead to drastic system-
atic variations of the resonance lineshape. The Argonne group therefore applied
a spectroscopy scheme that avoided both processes. The cooling laser was indeed
switched off during spectroscopy but only for a very short period of time—typically
a few µs—just enough for one excitation of the atom. After this single scattering pro-
cess, the cooling laser is turned on and cools the atom before the spectroscopy beam
is applied again. Additionally, the frequency of the spectroscopy laser is rapidly
scanned during this switching, in such a way that spectroscopy is performed alter-
nately on the blue and the red-detuned side of the resonance.

A spectrum obtained from a single captured 8He atom within 0.4 s observation
time is shown on the right part of Fig. 6.8. Extensive studies have been carried out in
order to investigate and to avoid all systematic shifts. For example the power of the
counterpropagating beams of the spectroscopy laser have to be very well balanced.
It turned out that the main systematic uncertainty is the exact trapping location of
the various isotopes within the trapping volume. If these locations are not exactly at
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trap center and therefore zero magnetic-field, a small Zeeman shift can arise. This
has been conservatively estimated to be less than 30 kHz for the 6He–4He isotope
shift and 45 kHz for 8He–4He. An important check for systematic uncertainties was
provided by studying all three fine-structure transitions 1s 2s 3S1 → 1s 3p 3P0,1,2 in
6He and two transitions in 8He. After subtracting the calculated mass shifts from
the observed isotope shifts, which varied by about 250 kHz for the different transi-
tions, excellent agreement was reached for the field shifts. This also demonstrates
the internal consistency of the atomic structure calculations. Finally it should be
mentioned that the photon recoil effect has to be taken into account in order to
obtain the correct isotope shifts. The absorption process must ensure energy and
momentum conservation. An atom at rest will therefore move after the absorption
of the photon with a velocity

υrecoil = pγ
M

= Eγ

Mc
, (6.51)

which requires the initial photon to carry the required amount of energy

Ekin =
p2
γ

2M
= h2ν2

0

2Mc2
(6.52)

additionally to the pure transition energy hν0. Thus, the resonance is shifted by

�νrecoil = hν2
0

2Mc2
(6.53)

and the difference between the corresponding shifts for 6He and 8He has to be taken
into account when calculating the isotope shifts. This is about 170 kHz and therefore
several times larger than the final uncertainty. More details on the helium isotope
shift measurements and its interpretation written for a broader audience can be found
in [68].

6.4.3 Lithium: Doppler-Free Two-Photon Spectroscopy
on Thermal Atoms

In the case of lithium, a trapping technique cannot be employed even though lithium
can be very well trapped in magneto-optical traps. But the short 11Li half-life of only
8.4 ms is prohibitive for this approach. To obtain high efficiency and simultaneously
sufficient laser spectroscopic resolution to determine the isotope shift with an accu-
racy of 100 kHz, a combination of Doppler-free two-photon excitation with effi-
cient resonance ionization and ion detection of the laser excited atoms was applied.
Measurements were performed at GSI, Darmstadt, (for 8Li, T1/2 = 838 ms and 9Li,
T1/2 = 178.3 ms) and at TRIUMF, Vancouver, for 8,9Li and the two-neutron halo
isotope 11Li. A simplified scheme of the setup is shown in Fig. 6.9. At both facilities,
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Fig. 6.9 Simplified experimental setup for the lithium spectroscopy (left) and level scheme with
the two-photon excitation and following resonance ionization ladder for lithium atoms. See text
for a detailed description. Figure taken from [23]. (Reprinted with permission from Phys. Rev. A
83 012516 Copyright 2011 American Physical Society)

the lithium isotopes are produced as singly charged ions, mass separated in a mag-
netic dipole field with ion beam energies of approximately 40 keV and transported
to the experiment, which is sufficiently far away from the hot and highly radioactive
source.

To perform high-resolution laser spectroscopy on atomic samples, the ion beam
must be stopped, neutralized and transformed into the gaseous state. This was effi-
ciently realized by stopping the ions in a thin graphite foil. To ensure quick release
from the foil, it is heated to about 2000 K with 4 W radiation of a CO2 laser. The
laser and the ion beam are focused to a spot size of about 1 mm on the foil. Measure-
ments of the release process showed that the implanted and neutralized ions leave
the foil within a few 100 µs, considerably faster than the half-life of 11Li and that
the surface ionization probability is sufficiently low in the range of 10−4.

Released from the foil, the thermal atoms do not form an atomic beam but appear
as a dilute and hot gas. Thus, laser spectroscopy must be performed very close to
the foil surface to achieve a reasonable overlap with the atom cloud and a Doppler-
free technique must be employed to reach the required accuracy. Two-photon spec-
troscopy has been used for the spectroscopy of the 1s→ 2s transition in hydrogen
over many years with ever increasing resolution and precision (see e.g. [69–71] and
references therein). In this technique the atom absorbs two photons from counter-
propagating laser beams. In the rest frame of the atom, moving with a velocity �υ
in the laboratory frame along the laser direction, the frequencies of the two laser
beams are shifted according to the Doppler formula

ω′1,2 =
ω0 ± �k·�υ√
1− υ2/c2

≈ ω± �k·�υ +O
(
v2

c2

)
. (6.54)
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Hence, if the atom absorbs two photons from the two counterpropagating beams,
the resonance condition reads

�
(
ω′1 +ω′2

)= 2�ω0 +O
(
�ω0

υ2

c2

)
= (Ef −Ei)/� (6.55)

and the first-order Doppler shift cancels: the combined energy of the two photons
becomes independent of the velocity and can be tuned to the resonance energy of
the atom between two states i and f. For thermal atoms, the higher order shifts
contribute on the level of a few kHz and this can be estimated and corrected with
sufficient precision to obtain an accuracy of about 100 kHz as required for the final
isotope shift. An important advantage of this technique compared to other Doppler-
free methods like saturation spectroscopy is that all atoms of the gaseous ensemble
contribute to the resonance signal, whereas in saturation spectroscopy only atoms
within a selected velocity class can contribute to the signal. Selection rules for a two-
photon transition are those of two combined E1 transitions [72]. Most important is
that the two states must be of the same parity, hence ��= 0,±2, moreover �J =
0,±1,±2 and similar for the total angular momentum �F = 0,±1,±2. However,
in the case of an s1/2 → s1/2 transition as it is used in lithium, only �F = 0 is
allowed due to angular momentum conservation.

For lithium, the two-photon spectroscopy was combined with resonance laser
ionization to guarantee both, sufficient accuracy and high detection sensitivity. Res-
onance ionization spectroscopy [73] was shown to be an extremely sensitive and
selective method for ultra-trace analysis. The excitation and ionization scheme is
presented on the right in Fig. 6.9. Lithium atoms in the 2s 2S1/2 ground state are ex-
cited by two-photon absorption at 735 nm to the 3s 2S1/2 excited state which decays
with a lifetime of 30 ns to the 2p 2P1/2,3/2 states. A second laser at 610 nm is used to
excite the 2p 2P1/2,3/2 → 3d 2D3/2,5/2 transition. Finally, the 3d states can be laser
ionized by either the 735 nm or the 610 nm laser. The laser-generated ions can be
collected and detected with an efficiency very close to unity, which makes resonance
ionization superior to fluorescence detection. A specialty in this excitation scheme is
the 3s→ 2p spontaneous decay that decouples the high-precision spectroscopy in
the two-photon transition from the resonance ionization in the 2p→ 3d→ Li+ lad-
der, where maximum efficiency is required to probe the successful 2s→ 3s excita-
tion. Performing resonance ionization directly out of the 3s state via the 3s→ 5p→
Li+ ladder leads to large AC-Stark broadening in the 2s→ 3s transition and renders
an accurate determination of the transition frequency impossible. In the 2p→ 3d
transition a strong AC-Stark shift also occurs, but in this case it is even helpful. As
mentioned before, the Doppler-free two-photon excitation is in first order indepen-
dent of the atoms velocity, whereas the regular E1 (single-photon) transition used
for the ionization experiences a Doppler shift and the 610 nm laser would therefore
select a single velocity class and diminish the photoionization signal. However, due
to the strong laser field, the linewidth of the transition is so much broadened that all
atoms are excited along the 2p→ 3d transition independent of their velocity. Actu-
ally, the broadening obtained with the applied laser power was so strong that all three
2p 2P1/2,3/2 → 3d 2D3/2,5/2 fine-structure transitions were driven simultaneously.
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The excitation ladder shown in Fig. 6.9 requires a sophisticated laser system.
First, high intensities are required for the non-linear process of two-photon exci-
tation as well as for an efficient non-resonant laser ionization. This could be eas-
ily achieved using pulsed lasers, but these do not provide the required accuracy.
Thus, a combination of continuous wave (CW)-lasers with resonant enhancement
in a passive optical resonator was applied. Laser light for the two-photon excitation
at 735 nm was produced by a titanium:sapphire (Ti:Sa) laser (≈1 W) and 610-nm
light for the 2p→ 3d transition provided by a dye laser. Both laser beams were
simultaneously enhanced in a two-mirror resonator placed in such a way that its fo-
cus lies in the interaction region. This provided sufficient intensity for an efficient
two-photon excitation and ionization. For precise frequency control, the Ti:Sa laser
was stabilized relative to a power-amplified diode laser that was in turn stabilized to
a hyperfine component in a transition in molecular iodine 127I2. The locking chain
includes also the enhancement cavity, which is locked to the Ti:Sa laser frequency
in order to maintain the resonance condition and the dye laser is then stabilized to
the enhancement resonator in such a way that the resonance with the 2p→ 3d tran-
sition of the isotope under investigation is always ensured, while the Ti:Sa laser is
scanned across the two-photon resonance.

Ions created by resonance laser-ionization are extracted from the laser interaction
region with a negative extractor voltage and focused into a commercial quadrupole
mass spectrometer (QMS) with electrostatic lenses. Ions transmitted through the
QMS rod system are focused with an exit lens and detected with a continuous dyn-
ode electron multiplier (CDEM) detector. Mass suppression between two neighbor-
ing isotopes was tested with ions of the stable isotopes 6,7Li produced by surface
ionization in the hot carbon catcher and after optimization a suppression factor
>108 was routinely achieved. The dark count rate of the CDEM detector was about
10−2/s.

When using CDEM detectors for detection of radioactive ions, one has to con-
sider that the ions are usually implanted into the surface of the sensitive region. Once
these ions decay, the decay products can efficiently trigger another ion event. This
leads to artificial detection efficiencies above 100 % but depending on the lifetime
of the implanted ions the second signal is delayed relative to the ion implantation.
For laser spectroscopy that can cause cross-talk between different channels with dif-
ferent laser frequencies. When the laser frequency is changed on a timescale that is
fast compared to the half-life of the isotopes, the decay of those ions implanted dur-
ing resonance will contribute to later channels and obscure the resonance line shape.
To avoid these effects, the laser was slowly scanned across the resonance, collecting
data at each frequency for a few seconds and then interrupting the incoming ion
beam by using a fast kicker behind the mass separator. Afterwards, the remaining
decay signals were recorded into the same frequency channel for about 5 half-lives
of the respective isotope before the laser frequency was changed to the next channel
and the ion beam turned on again.

Figure 6.10 shows a resonance profile obtained for 11Li. The narrow Doppler-free
components are labeled with their respective F quantum numbers, according to the
selection rules discussed above (only transitions with �F = 0 are allowed). Each
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Fig. 6.10 Typical spectrum
of 11Li as a function of the
two-photon transition
frequency. Two hyperfine
lines are observed due to the
�F = 0 selection rule for
such a transition. Voigt
profiles are fitted to the
experimental data points and
the residuals of the fit are
shown below the spectrum.
(Reprinted with permission
from Phys. Rev. A 83 012516
Copyright 2011 American
Physical Society)

of the two peaks was fitted with a Voigt profile. Lorentzian and Gaussian linewidths
of the Voigt profile were constraint to be equal for both hyperfine structure compo-
nents.

To calculate the isotope shift, resonance positions of the individual hyperfine
components obtained from the fit, must be converted into center-of-gravity (cg) fre-
quencies. The energy shift of the hyperfine state with angular momentum F relative
to the J -level energy is given by

EHFS = A
2
CF = A

2

[
F(F + 1)− J (J + 1)− I (I + 1)

]
(6.56)

with the Casimir factor CF and the magnetic dipole hyperfine constant A. It should
be noted that in first-order perturbation theory, the hyperfine structure cg coincides
with the unperturbed J -level energy and can be calculated from the two hyperfine
resonances in the 2s1/2 → 3s1/2 transition of lithium according to

νcg = CF νF ′ −CF ′ νF
CF −CF ′

, (6.57)

where νF is the transition frequency of the respective F → F transition. For 7,9,11Li
with nuclear spin I = 3/2, this leads to νcg = 5

8ν2 + 3
8ν1. The obtained frequen-

cies were corrected for AC-Stark shift contributions by measuring the transitions
at different laser powers and extrapolating back to zero laser intensity. This could
be performed for all isotopes besides 11Li, which had too low statistics for a mea-
surement at low power. Thus, the isotope shift of 11Li was determined relative to a
measurement of the reference isotope 6Li with the same power conditions.
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All isotope shifts of the complete lithium isotopic chain were measured to an
accuracy of 100 kHz or better and the charge radii plotted in Fig. 6.5 [39] and dis-
cussed in the theory part were obtained. The isotope shift between the stable iso-
topes 6Li and 7Li was determined by various groups in a number of transitions in
the neutral system as well as in the singly charged ion Li+. With the exception
of the 2s 2S1/2 → 2p 2P1/2,3/2 (D1,D2) transitions in neutral lithium a reasonable
agreement was obtained for the change of the mean-square charge radius extracted
from these measurements and with the result from elastic electron scattering [23].
It should be noted that for this extraction the mass shift calculations for the respec-
tive transitions were required. Only the results from the D1 and D2 lines fluctuated
strongly and were mutually inconsistent. This was recently resolved and ascribed
to quantum interference (cross damping) in the unresolved hyperfine structure of
these transitions [74, 75]. The latest results bring the D-line measurements into full
agreement with the other transitions and elastic electron scattering. This provided a
very important check of the consistency and reliability of the atomic structure mass
shift calculations.

Finally it should be noted that the uncertainty of the absolute charge radii of the
lithium isotopes is much larger than those for helium. This is due to the relatively
large uncertainty of the reference radius of 6Li. For this isotope, new and improved
measurements of elastic electron scattering or muonic atoms spectroscopy could
considerably reduce this uncertainty.

6.4.4 Beryllium and Neon: High-Accuracy Measurements
with Fast Beams of Ions

6.4.4.1 Collinear Fast Beam Spectroscopy

Collinear laser spectroscopy (CLS), also called collinear fast-beam laser spec-
troscopy (CFBLS) was developed in order to perform high resolution laser spec-
troscopy on short-lived isotopes to investigate nuclear ground-state properties at
ISOL (isotope separation on-line) facilities. It requires ion beams with low emit-
tance and of typically 30–60 keV beam energy. Since such beams are readily avail-
able at ISOL facilities, they are often called ISOL-type beams in contrast to the
high-energy (at least several MeV/u, up to GeV/u), large emittance beams at in-
flight facilities. In CLS, the ion beam is superimposed with a laser beam in collinear
(parallel) or anticollinear (antiparallel) geometry. A typical experimental setup at an
ISOL or IGISOL facility is depicted in Fig. 6.11. It consists of a target-ion source
combination, where short-lived isotopes are first produced and then ionized by var-
ious processes. Surface ion sources, plasma ion sources as well as resonance laser
ionization are usually applied for the ionization. The ion source is at a high positive
potential (typical 30–60 keV), such that the ions extracted are accelerated towards
ground potential. The ions are then mass-separated in a magnetic sector field and



6 Nuclear Charge Radii of Light Elements and Recent Developments 265

Fig. 6.11 Principle of classical CLS. Radioactive isotopes are produced by bombardment of a
target with a high-energy primary beam either in a target container (e.g. at CERN-ISOLDE) or
within a gas cell (e.g. at the JYFL-IGISOL). After extraction and mass separation the ion beam
is superimposed with a collimated laser beam using electrostatic deflector plates. Additional ion
optical systems match the ion beam profile for maximum overlap with the laser beam. The ions are
either neutralized in a charge exchange cell (CEC) or directly studied in the fluorescence detection
region (FDR). When the scanning voltage applied to the CEC or the FDR results in a beam velocity
that fulfills the resonance condition of an atomic transition with the Doppler-shifted light, the laser
induced fluorescence in the FDR is detected by photomultiplier tubes (PMTs) and recorded after
signal processing in the data acquisition system

transported to the collinear laser spectroscopy beamline, where an electrostatic de-
flector is used to superimpose the ion beam with a laser beam either in collinear or
in anticollinear geometry.

The electrostatic acceleration has two consequences for laser spectroscopy: First,
it leads to a large Doppler shift of the resonance frequency ν0 of the ion according
to

ν = ν0

√
1− β2

1− β cos θ
(6.58)

with the ion velocity in terms of the speed of light β = υ/c and the angle between
the ion beam and the laser beam direction θ . For exact collinear (+, θ = 0) or
anticollinear (−, θ = π ) geometry, this simplifies to

ν± = ν0

√
1± β
1∓ β . (6.59)

The laser frequency must therefore be blue-shifted for collinear νcoll = ν+ and red-
shifted for anticollinear νanticoll = ν− excitation. Please note that different isotopes
are accelerated to different velocities (at constant beam energy). These “artificial
isotope shifts” must be considered in the analysis. The second effect of the static ac-
celeration is the longitudinal kinematic compression during the acceleration, which
leads to a strong reduction of the velocity spread of the ion beam. This was analyzed
by Kaufman [8] in a simple approach: the velocity difference �υ = α between an
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ion that starts with a velocity υ1 = α inside the ion source and an ion that is initially
at rest is reduced after acceleration by the static potential difference U to

�υ ′ =
√

2eU

m

(
1−

√
1+ mα

2

2eU

)
(6.60)

≈
√

2eU

m

mα2

4eU
= α 1

2

√
mα2

2eU
= α 1

2

√
�Esource

eU
. (6.61)

In the last step, the formula was generalized to an energy distribution �Esource =
mα2

2 of the ions before acceleration. Kaufmann assumed a thermal ensemble with
a Maxwell-Boltzmann distribution with energy width �Esource = kT and obtained
the reduction factor

R = �υ
′

�υ
= 1

2

√
kT

eU
. (6.62)

However, additional contributions to the initial energy-width in the ion source have
to be considered. In a directly heated ion source for example, a voltage drop along
the body of the source is unavoidable and leads to an additional energy width since
the ionization occurs along a certain depth of the source. This leads to larger re-
maining Doppler widths. In practice, residual Doppler widths on the order of 50–
100 MHz are usually obtained in CLS and the line profile can be described suffi-
ciently well by a Doppler or a Voigt profile.

Once the ion beam and the laser beam are superimposed, additional ion beam op-
tics is usually present in order to shape and steer the ion beam. In the figure, only a
quadrupole doublet is shown as a representative of such devices. Afterwards the ion
beam enters the so-called charge-exchange cell (CEC) [76]. Some alkaline vapor is
generated inside the CEC by heating a small amount of solid alkaline metal. The ion
beam passing through the vapor is neutralized through ion-atom charge-exchange
reactions. This allows then spectroscopy on fast atoms. Alternatively spectroscopy
can be performed directly on the ions, either by removing the CEC from the beam-
line or not operating it. The CEC is followed by the fluorescence detection region
(FDR). The CEC-FDR distance should be as small as reasonably possible to avoid
optical pumping into dark states. For the same reason, interaction with the laser
light must be avoided along the beam pipe if spectroscopy is performed on the ions.
Therefore, an additional potential is applied to the FDR or the CEC, such that the
ions are slightly decelerated or accelerated when entering it.

A variable voltage applied to the FDR or the CEC has the additional advantage
that ion Doppler tuning can be applied: Varying the potential results in a variation
of the ion velocity and therefore of the Doppler-shifted laser frequency that the ion
experiences in its rest frame. Thus the laser frequency can be fixed in the laboratory
system and does not need to be scanned. Stabilizing a laser at a fixed frequency is
much easier than scanning it reproducibly in a reliable manner, whereas the voltage
can be scanned easily with high accuracy and reproducibility. A rough estimation of
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the voltage-to-frequency conversion factor for an ion with mass M is given by the
differential Doppler shift

∂ν

∂U
= e ν√

2eU Mc2
(6.63)

obtained from the non-relativistic Doppler shift.
The principle of collinear laser spectroscopy requires the extraction of the isotope

shift from the Doppler shift and therefore the acceleration voltage U must be known
to a reasonable accuracy. Usually a 10−4 measurement is sufficient, but this depends
on the mass region. Essential is here the second derivative of the Doppler-shifted
frequency, which can be calculated from (6.63) as

∂2νL

∂U ∂A
=− eνL√

2eUM

1

2A
, (6.64)

with A being the mass number of the respective isotope. For the beryllium res-
onance transition at λL = c/νL = 313 nm, an acceleration voltage of 50 kV and
M = 10 amu, the differential Doppler shift is about 30 MHz/V and the double
differential shift is 1.5 MHz V−1 amu−1. Thus, a relative uncertainty of 10−4 in
the acceleration voltage corresponds to an uncertainty in the artificial isotope shift
of ±7.5 MHz for neighboring isotopes and more than ±20 MHz for the isotope
shift between 12Be and the stable reference isotope 9Be. An accuracy compared to
that reached for the lighter elements He and Li is thus not possible with standard
collinear laser spectroscopy.

An alternative to CLS are measurements in a Paul trap. These where first dis-
cussed as a possible approach for isotope shift measurements on beryllium ions
[62, 77]. However, it turned out that the field-shift factor is about an order of mag-
nitude larger for Be+ than for the neutral systems of helium and lithium [78]. This
is easily understandable since the single electron in the 2s shell experiences a much
stronger binding and thus a larger probability density at the nuclear site. A reduc-
tion of the required accuracy compared to the previous work was thus found to be
tolerable and collinear laser spectroscopy seemed to be possible if—instead of only
isotope shifts—the total transition frequency is measured with about 10−9 accuracy
as will be discussed below.

6.4.4.2 Classical Collinear Laser Spectroscopy at Its Accuracy Limits: Neon
Isotopes

For a long time, neon isotopes have been the lightest elements for which nuclear
charge radii were determined by collinear laser spectroscopy. This was achieved
by combining several techniques that allowed for a very sensitive detection of the
laser resonance condition as well as for an accurate determination of the isotope
shift as required for the light elements. A lecture note on the technique of optical
pumping followed by state-selective ionization can be found in [16]. We will shortly
summarize it for two reasons: firstly, it is partially similar to the technique applied
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Fig. 6.12 Excitation and fluorescence emission paths within the neon level scheme as applied in
CLS. For spectroscopy purposes of radioactive isotopes the excitation path, marked (a) has been
applied. When Ne spectroscopy was used for voltage calibration of the ISOLDE acceleration po-
tential, the paths marked with (b) were simultaneously driven by a single laser being retroreflected
at the exit port of the beamline

later to beryllium and, secondly, the isotope 17Ne is so far the only proton-halo
candidate that has been investigated by laser spectroscopy.

The neon isotopes produced at ISOLDE were ionized in a plasma source and de-
livered to the beamline of the collinear laser spectroscopy experiment COLLAPS.
Here, charge exchange in a sodium-filled CEC resonantly populated the metastable
[2p5(2Po

3/2)3s]2 level6 as shown on the left in Fig. 6.12. The total angular mo-
mentum of J = 2 of this state has the consequence that it is metastable since the
decay into the atomic neon 2p6 1S0 ground state is forbidden in the electric dipole
approximation due to the difference of 2� in angular momentum. However, a trans-
fer back to the ground state becomes possible if the atoms are excited by a laser
along the [2p5(2Po

3/2)3s]2 →[2p5(2Po
3/2)3p]2 transition (marked “a” in Fig. 6.12).

From the excited state, the atom can return to the ground state by a sequential
[2p5(2Po

3/2)3p]2 → [2p5(2Po
3/2)3s]1 → 2p6 1S0 decay. Thus, resonant laser exci-

tation leads to a depopulation of the metastable state. This can be probed extremely
sensitive by taking advantage of the different cross sections for collisional ioniza-
tion: While the metastable state has an ionization energy of only about 5 eV, the
ground state is bound much more tightly with an ionization energy of almost 22 eV.
The metastable state is therefore easily ionized if the atom collides with another
atom in a second gas cell located behind the laser interaction region. By deflecting
the ions behind the gas cell they can be separated from the remaining atoms and the
ratio of the two beam intensities is a measure for the resonance condition.

The second interesting point is the way the beam energy was determined. The
potential distribution inside the plasma ion source does not allow for a very precise

6This state designation means that the 5 electrons in the 2p-shell couple to a 2P3/2 state. The spin
of the valence electron in the 3s shell can then couple to a total J of either 1 (3/2 − 1/2) or 2
(3/2+ 1/2). The subscript outside of the square bracket represents the J value.
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knowledge of the ion beam energy and introduces a large systematic uncertainty of
the isotope shift. To resolve this problem, a beam energy calibration was performed
using a peculiarity of the neon excitation scheme: The transition frequencies for the
[2p5(2Po

3/2)3s]2 → [2p5(2Po
1/2)3p]2 and the [2p5(2Po

3/2)3s]2 → [2p5(2Po
1/2)3p]1

transitions (marked “b” in Fig. 6.12) coincide in the laboratory frame if the first
transition is excited anticollinearly and the second one collinearly at a beam energy
of 61,758.77 eV. Using a single laser beam that is retroreflected at the end of the
beamline both transitions are excited at the same time if the condition

νL =√
ν1ν2 (6.65)

is fulfilled [79]. Since ν1 and ν2 were well known from literature, the required laser
frequency νL could be simply calculated. With this condition the beam energy be-
comes

eU =mc2 (
√
ν1 −√

ν2)
2

2
√
ν1ν2

. (6.66)

Practically, the condition was not exactly fulfilled and the two resonances appeared
separated by a few volt, which could be easily taken into account in the beam energy
calibration. With these preparations, the isotope shifts of 17−28Ne were measured
and the charge radii extracted. The results are discussed with respect to a possible
two-proton-halo in 17Ne in [80] and in terms of clustering, deformation, shell clo-
sures and disappearance of magic numbers in [81]. 17Ne exhibits by far the largest
charge radius within the neon chain and this is attributed to a tail in the proton den-
sity distribution. A two-proton halo outside a core of 15O can only develop with
a significant admixture of s2-character to the d2-orbitals.7 Since the charge radius
is very sensitive to these mixing ratios it is an excellent benchmark for theoretical
models and according to fermionic molecular dynamics calculations the s2 contri-
bution is about 40 % [80].

6.4.4.3 Frequency-Comb Based Measurements: Beryllium Isotopes

In order to obtain the charge radius of beryllium isotopes with an accuracy of about
1 % and taking into account the field shift factor of F =−17.02 MHz/fm2 [32, 78]
for beryllium, the isotope shift must be determined with an accuracy of about 1 MHz
or better.

As described in Sect. 6.4.4.1, beryllium is very sensitive to the exact accelera-
tion voltage because the double-differential isotopic shift according to Eq. (6.64) is
1.5 MHz V−1 amu−1 at a beam energy of 50 keV and therefore rather large. Assum-
ing a typical voltage uncertainty of δU/U = 10−4, the voltage-based uncertainty
in the isotopic shift between the stable isotope 9Be and 12Be is 22.5 MHz. This
exceeds the requested accuracy for beryllium charge radii measurements by more

7A one-proton halo would require a core of 16F, which is unbound.
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Fig. 6.13 Experimental layout of the frequency-comb based CLS on beryllium isotopes. Two
laser systems applied for quasi-synchronous laser excitation on collinear and anticollinear geom-
etry, chopped in fast sequence by mechanical shutters. Figure taken from [50]. (Reprinted with
permission from Phys. Rev. Lett. 102, 062503 Copyright 2009 American Physical Society)

than an order of magnitude, which is why classical CLS could not be applied for
this study. However, CLS was used before in order to polarize a beryllium ion beam
and to perform β-asymmetry detected nuclear magnetic resonance (β-NMR) mea-
surements [16]. From these, the magnetic dipole and electric quadrupole moments
of 11Li as well as the magnetic moment of 11Be were determined for example.

The approach used for isotope shift measurements is partially related to the stud-
ies in neon described in the previous section. Again (quasi-)simultaneous excitation
in collinear and anticollinear geometry is applied. Deviating from Eq. (6.65), where
two different transitions have been probed by one laser beam, here two laser beams
with frequencies νcoll and νanticoll are overlapped with the ion beam in order to excite
the same transition in opposite geometries. Both transitions from the ionic ground
state into the fine-structure dublett of the excited 2p state (2s 2S1/2 → 2p 2P1/2,3/2)
at about 313 nm were probed. The absolute transition frequency in the ions rest-
frame ν0 was determined for each isotope with high accuracy using the relation

ν0 =√
νcoll · νanticoll. (6.67)

Therefore the laser frequency had to be determined with an accuracy of at least
δν/ν = 10−9, which is much higher than in standard CLS experiments.

The setup used to accomplish this task is shown in Fig. 6.13. A continuous-wave
ring dye laser at about 628 nm was applied for anticollinear laser spectroscopy and
stabilized with a phase-lock to a commercial compact fiber-laser based frequency
comb. The laser light was then transported via 20-m long fibers to a second har-
monic generation (SHG) device close to the beamline and after frequency doubling
to a wavelength of about 314 nm directed along the beamline with a laser intensity
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of approximately 5 mW. A second ring dye-laser at a wavelength of about 624 nm
was stabilized to a molecular transition in iodine. This wavelength stabilization was
again repeatedly cross-referenced to the frequency comb, thus transferring the fre-
quency comb’s accuracy to the iodine setup. The corresponding laser light was again
transported by fibers to a second SHG device close to the vacuum beamline, where
light at 312 nm was produced with similar laser power but this time collinearly
superimposed with the 50-keV Be+ ion beam from ISOLDE.

In order to clearly separate the collinear spectrum from the anticollinear spec-
trum, fast shutters were implemented in both laser paths, which in fast sequence
blocked alternately one of the laser beams. In a first experiment the isotopic shifts
and corresponding charge radii of 7,9,10,11Be were determined with accuracy bet-
ter than 1.5 MHz which translates to less than 1 % uncertainty in the RMS nuclear
charge radius [50]. While the laser wavelength control and laser beam alignment
contributed only with about 500 kHz systematic uncertainty to the final uncertainty
of the isotope shift, the dominating uncertainty in the total charge radius arises from
the experimental uncertainty of the reference charge radius in 9Be.

In this first run, 12Be was not accessible due to the low production yield and the
high but customary laser straylight background. At least at the end of the first run
the isobaric beam contamination on mass 12 was observed to be very low. This was
the motivation for a second beamtime after the implementation of an ion-photon-
coincidence technique, as will be described below in Sect. 6.5.2 [51]. Therefore the
ion beam has been deflected out of the laser beam axis behind the optical detection
region and detected on a secondary electron multiplier. This signal has been fed
in a coincidence device together with the delayed signal of two photomultiplier
tubes (PMT). This upgrade of classical optical fluorescence CLS with background-
suppression and state-of-the-art laser control, thus enabled a precise measurement of
the charge radius of 12Be with better than 1 MHz accuracy, which is unsurpassed for
such a light element in CLS. This was achieved even with the boundary condition
of a weak ion yield of only about 8000 ions per proton pulse, imping statistically
every 2–3 seconds onto the ISOLDE target.

The charge radii of the beryllium isotopes are plotted together with those of
lithium in Fig. 6.5. The increase from 10Be to 11Be is caused by the single halo neu-
tron in 11Be and can in first-order be ascribed to the core-recoil effect. An average
distance of 7.7 fm between the 10Be core and the halo neutron can be extracted from
this simple picture [50]. Adding another neutron to 11Be results in the nucleus 12Be,
which has a two-neutron separation energy of S2n ≈ 3.7 MeV and is therefore not
expected to be a halo nucleus. This is supported by the experimentally determined
matter radius of 12Be of 2.59(6) fm that is considerably smaller than the 2.73(5) fm
of 11Be [82]. The charge radius exhibits the opposite trend and increases further.
This is ascribed to a promotion of the neutrons expected in the standard shell model
to populate the p1/2 state into a mixture of sd orbitals. According to fermionic
molecular dynamics calculations (sd)2 states contribute to approximately 70 % to
the total wavefunction. This indicates clearly the disappearance of the N = 8 magic
number as discussed in [51].
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6.5 Further Developments in Collinear Laser Spectroscopy

6.5.1 Isotope Shift Determinations Using β-Asymmetry Detection

The optical detection of the fluorescence photons from fast ion or atom beams with a
scanning voltage applied to the optical detection setup or the CEC, respectively, can
be considered the classical approach of collinear laser spectroscopy. However, this
approach has a limited sensitivity and requires typically beams of at least 104–105

particles per second. Sensitivity is of course a critical issue in the detection of ex-
otic short-lived nuclei and the production rates get very small further away from the
valley of stability. Thus, increasing sensitivity has been a continuous effort over all
the years in CLS and led to the development of many specialized techniques. A very
successful direction was the detection of charged particles instead of or in combi-
nation with single-photon detection. Examples are resonance ionization combined
with CLS [14], state-selective charge-exchange applied for earth-alkaline ions [83]
and state-selective ionization for rare-gases [84]. Beta-asymmetry detection has pre-
viously been used to determine nuclear moments [16] but not for isotope shift mea-
surements. This was only recently achieved. Another technique that is more gener-
ally applicable and has enabled CLS further away from the valley of β-stability is
the usage of cooled and bunched ion beams. Both methods will be discussed in the
following sections.

Beta-asymmetry detection after optical pumping has been used previously to de-
termine nuclear magnetic moments and nuclear quadrupole moments as described
in detail in [16]. Recently, this technique has also been used for the first time to
extract nuclear charge radii. The setup used at ISOLDE (CERN) for these measure-
ments in the Mg chain is schematically shown in Fig. 6.14. A polarized ion beam
is obtained by applying circularly polarized light (σ±) to the 3s 2S1/2 → 3p 2P1/2
transition in Mg+. After several excitation-relaxation processes, the atoms are trans-
ferred into the mF substate with the maximum projection along the laser direction
as depicted in the inset of Fig. 6.14. To maintain this polarization, a weak longitudi-
nal magnetic field is applied along the beam pipe. The nuclear polarization achieved
by optical pumping is then decoupled from the electron shell in a strong magnetic
field (Paschen-Back regime) before the ion is implanted into a MgO crystal. Typical
implantation depths at 40–60 keV are of the order of a few 10 nm, deep enough
to avoid surface effects in a sufficiently clean crystal. When the laser light is ap-
plied at the resonance frequency, the polarization will build up along the beamline
and the β-decay of the implanted ions will exhibit an anisotropy in the emission
of the positrons/electrons from the β-decay. This asymmetry can be detected using
β-telescopes located between the crystal and the magnetic pole-shoes and is used as
a probe for the resonant pumping process. The intensity distribution of the emitted
electrons or positrons is given by the projection of the β-particle velocity �υ on the
spin �I of the polarized nuclei [85]

I (ΘeI )= 1+A �I
| �I | · �υ/c= 1+Aυ

c
cosΘeI , (6.68)
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Fig. 6.14 Experimental setup using collinear laser spectroscopy for optical pumping of Mg
isotopes with subsequent β-asymmetry detection. Laser induced optical pumping among the
mF -states (right) inside a magnetic guiding field leads to a polarized ion beam. After implanta-
tion inside a suitable crystal inside a strong magnetic field, the decay asymmetry is observed by
two opposite sets of scintillators coupled to photomultiplier tubes (PMT). Applying an RF-field
by some external coils (not shown in figure) can then destroy the polarization of the ions inside
the crystal and provides a nuclear magnetic resonance signal. Left picture taken from [18], ©The
Royal Swedish Academy of Sciences. Reproduced by permission of IOP Publishing. All rights
reserved

with a parameter A= aβPI linked to the degree of nuclear polarization PI and the
β-decay asymmetry parameter aβ , depending on the change of the nuclear spin I
during the decay. ΘeI is the angle between the electron’s direction of flight and the
spin axis. The experimental observable is then the β-asymmetry defined as

a = N
↑ −N↓

N↑ +N↓ , (6.69)

with the count rates N↑, N↓ measured above and below the crystal, respectively.
The observed asymmetry as a function of laser frequency is shown together with
standard CLS fluorescence resonance profiles (green) in Fig. 6.15 as dark and grey
shaded peaks for 21,29,31Mg.

To determine the g-factor or the electric quadrupole moment of the nucleus, nu-
clear magnetic resonance can be performed on the polarized nuclei. Therefore, the
laser is tuned to a frequency that provides a strong asymmetry signal and a radio-
frequency is applied to drive transitions between different mF substates in order to
depolarize the sample. This has previously been applied to study—amongst others—
nuclear spins and moments of lithium, beryllium and magnesium isotopes [16]. But
here we will discuss the usage of the asymmetry signal itself for an isotope shift
measurement. Therefore, a lineshape must be fitted to the asymmetry spectrum that
depends on the polarization obtained in the optical pumping process and is also af-
fected by the transition into the strong magnetic field. The lineshape is modelled
using a rate equation approximation for the optical pumping process and solving
the system of differential equations for the population of the individual mF states
with a Runge-Kutta algorithm. Here the experimental laser intensity and the transi-
tion strength between the hyperfine components have to be taken into account. The
adiabatic transition into the strong-field region corresponds to a movement along
the levels of the Breit-Rabi diagram from the |F,mF 〉 to the |mJ ,mI 〉 regime. The
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Fig. 6.15 Spectral lines of singly charged Mg isotopes in the D1 transition [86]. The (Doppler–
tuning) frequency scale is relative to the reference isotope 26Mg. The dotted lines represent the cen-
ter-of-gravity position for the respective isotope as indicated. Standard fluorescence (green) spec-
troscopy was applied for the magnesium isotopes 22–30Mg and 32Mg, where the isotopes 30,32Mg
with lower yields have been recorded by ion-photon coincidence detection. Only β-asymmetry
detection (grey and black) was possible for the isotopes 21,31Mg. The applicability of this method
is demonstrated by a compatibility cross-check with data obtained from fluorescence spectra at
isotope 29Mg, for which both spectra—optical and β-asymmetry—are shown. (Reprinted with
permission from Phys. Rev. Lett. 108 042504 Copyright 2012 American Physical Society)

occupation numbers in the |F,mF 〉 system resulting from the rate equations for op-
tical pumping are transformed into the corresponding |mI 〉 states and the nuclear
spin polarization PI can be obtained, which determines the amplitude of the β-
decay asymmetry observed in the experiment. The experimental spectra are then
fitted by varying the hyperfine structure parameters, including the center-of-gravity
of the hyperfine structure, which determines the isotopes shift.

Isotope shifts were measured with CLS for all Mg isotopes along the complete
sd-shell (21Mg–32Mg) using various detection techniques as presented in Fig. 6.15
taken from [86]. While the isotopes that were produced with sufficient yields were
detected in the standard optical way, the isotopes 21Mg and 31Mg had production
rates much too low for resonance fluorescence detection. Thus, these isotopes were
investigated using the β-asymmetry detection. In order to ensure the compatibil-
ity of optical and β-asymmetry detection, the isotope 29Mg was detected with both
techniques. This isotope was produced in sufficiently large quantities of about 106

ions/s and its half-live of 1.3 s is short compared to the time constants for spin-
relaxation processes in the MgO crystal. The isotope shifts obtained with the two
techniques agreed within 2σ which could be caused by slightly different experimen-
tal conditions or by a statistical fluctuation.

The more exotic even isotopes 30,32Mg were optically detected using an ion-
photon coincidence and restricting the observation time to about 3 half-lives of the
respective isotope after the proton pulse impinged onto the ISOLDE target.

A schematic view of a collinear laser spectroscopy setup summarizing some of
the different detection methods is shown in Fig. 6.16.
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Fig. 6.16 Overview of various detection methods for CLS. In the classical approach (a) the scan-
ning voltage (UDoppler) is directly applied to the FDR. For spectroscopy of atoms (b) the ions
are neutralized in an alkaline-vapor loaded charge-exchange cell (CEC) and the atoms velocity is
scanned by applying the voltage to the CEC instead of the FDR. If the detection limit in ion spec-
troscopy has to be increased, the setup in (a) can be upgraded to a photon-ion-coincidence setup (c)
by detecting the ions in a secondary electron multiplier (SEM) and registering only coincidences
of delayed PMT and SEM signals. For very short-lived radioactive species the β-asymmetry detec-
tion can be applied (d). Optical pumping is performed with circularly polarized light in a magnetic
guiding field and the spin polarized beam is implanted in a crystal, entangled between two opposite
scintillator-PMT arrays in a strong magnetic field

6.5.2 Photon-Ion Coincidence Detection

Laser straylight produces a considerable amount of background on the PMTs in
the classical optical detection scheme, limiting the sensitivity at very low yields of
radioactive isotopes. This background can be reduced if the photomultiplier signal is
gated with a signal of a particle detector downstream the beamline [87], as shown in
line (c) of Fig. 6.16. This coincidence technique ensures that only those photons get
accepted that appear at a time when an atom or ion was definitely passing through
the optical detection region. Therefore, the photon signal is delayed by electronic or
digital means for the time required for the particle at the corresponding beam energy
to fly from the optical detection region to the particle detector. The flight time can
be determined using e.g. a time to digital converter or a multi-channel scaler (and
an isotope with sufficiently large production rate). An appropriate way to delay the
photon signal has to be used to avoid dead-time losses. The width of the gate has to
be chosen according to the length of the optical setup. An increase in signal-to-noise
of a factor of 1600 has been demonstrated in past experiments [87] and recently it
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has been applied in the detection of 12Be and 30,32Mg as presented above. This
technique is limited by the existence of strong isobaric contaminations, which can
hardly be suppressed in many regions of the nuclear chart.

An inverse approach to reduce background from scattered light is to bunch the
ions and let them pass the detection region as a short bunch. In this special case all
fluorescence events occur during a short period of time corresponding to the length
of the ion bunch.

6.6 Towards the Limits: Improving Sensitivity with Cooled
and Bunched Ion Beams

Collinear laser spectroscopy, as all other low-energy experiments on short-lived ra-
dioactive isotopes, benefits from ion beams with high brilliance. To reduce the emit-
tance beyond the standard ISOL-like beam quality, beam cooling is beneficial for
CLS since the laser-ion beam-overlap can be improved, laser straylight reduced and
the ion beam transport efficiency increased. This is particularly crucial for weak
exotic beams with yields of only a few hundred ions per second. Various cooling
mechanisms have been applied for ions in traps and storage rings, such as stochas-
tic, electron, resistive, sympathetic, buffer-gas and laser cooling. Cooling is usu-
ally a statistical process that requires multiple interactions of the ion or atom to be
cooled with the cooling medium. An ion beam can therefore either be guided mul-
tiple times through a cooling device like in a storage ring, where cooling is applied
for very short times on each turn, or it can be slowed down and even stopped in
a trap in order to obtain sufficient interaction time. In this regard buffer gas cool-
ing has been established as the most universal cooling mechanism for short-lived
radioactive isotopes and has been applied at several facilities.

The first buffer-gas cooling in a linear radio-frequency quadrupole (RFQ) was
proposed and applied by Douglas and French [88]. Since then this technique
has been established as standard technique for ion beam emittance improvement
at various radioactive on-line facilities, for example at ISOLDE/CERN [89–91],
IGISOL/University of Jyväskylä [92], LEBIT/MSU [93], and ISAC/TRIUMF [94].
Additional to the radio-frequency potential during the buffer gas cooling, the RFQ
structure can be segmented in order to apply a DC offset potential. This idea was
first proposed at McGill University in 1997 [95], applied for mass measurement by
Herfurth and coworkers [89] and later for collinear laser spectroscopy by Nieminen
et al. [92, 96]. In CLS the application of the gas-filled segmented RFQ leads to a
suppression of background and increase in sensitivity.

6.6.1 Principle of a Radio-Frequency Quadrupole

A linear RFQ is a structure formed by four rods which are oriented as shown in
Fig. 6.17. In order to store the ions inside a linear RFQ, the ion beam must be
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Fig. 6.17 Schematic cut-drawings perpendicular to the symmetry axis (left) and side view (right)
of a segmented RF-quadrupole. The potential shown below displays the DC offset potential in
trapping mode (solid line) and for the extraction of the cooled ion bunch (dotted line)

decelerated first. Thus, the RFQ is installed on a high-voltage platform to which a
potential similar to that of the ion source is applied. On the left side of Fig. 6.17, a
simplified cut-drawing perpendicular to the symmetry axis is shown and on the right
a cut through the central symmetry axis as indicated in the left figure. Opposite rods
are connected to the same radio-frequency (RF) potential, while adjacent rods are
shifted in phase by 180◦. In conventional quadrupole mass filters the rods are not
segmented and a single DC-potential is applied at each of the four rods, whereas for
RFQ coolers and bunchers each rod is segmented and individual DC potentials can
be applied to each segment.

Inside the RFQ the ions are confined by the electric field generated by the volt-
ages U(t, i) applied to the rods,

U(t, i)=URF · cos(ωt + φ)+UDC,i , (6.70)

where the first term is the quadrupolar radio-frequency field of a two-dimensional
Paul-trap [97] and the second term in Eq. (6.70) describes the DC-offset potential of
the individual RFQ-segment i of the RFQ structure. Recently, a first RFQ has been
realized and applied for laser spectroscopy, which is driven by a digital square-
wave excitation [94] instead of the cos-like function given in Eq. (6.70). A typical
DC-potential trend is shown on the right in Fig. 6.17. The solid line represents the
applied offset-potentials during the accumulation and cooling time. Additional to
the transverse confinement of the ions created by the quadrupole fields of the RFQ,
the longitudinal potential well allows for the axial trapping.

For cooling the RFQ structure is filled with a chemically inert buffer gas like
helium at typical pressures of the order 10−2–10−1 mbar. To minimize charge-
exchange processes the buffer gas should have a high ionization potential. Through
the interaction of the ions with the buffer gas the ions are slowed down and dissi-
pate energy by collisions with the gas atoms inside the RFQ structure. Thus the ions
transversal oscillation amplitude in the quadrupole field is reduced, which inher-
ently leads to reduced mass separation properties of the RFQ. Moreover, the axial
kinetic energy decreases during the passage through the structure. The entrance po-
tential of the RFQ as shown in Fig. 6.17 is chosen in such a way that the ions can
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just overcome the potential wall and enter the RFQ, but are captured between the
second potential wall at the exit of the RFQ and the entrance potential as soon as
they have lost a small part of their energy in buffer gas collisions. Hence the ions
are multiply reflected and successively cooled down into the potential minimum.
The final kinetic energy of the ions is limited by the cooling gas temperature. For
a detailed description and simulations of the gas-ion interaction for cooling in a
segmented RFQ see for example [89, 98] and references therein.

Using fast switches, the potential of the last RFQ segments can be lowered af-
ter a certain cooling time tcool, which creates a potential as indicated by the dotted
line in the right of Fig. 6.17. The ions can then leave the RFQ as a bunch and
are again accelerated to the initial energy reduced by the energy dissipated in the
cooling process. Depending on the accumulation and cooling time, the ions form a
short bunch with strongly reduced energy spread. In some cases [96] the remaining
energy spread of the ion bunch can be reduced down to 10−5 of the total accelera-
tion energy, which makes the general velocity compression of CLS, as described in
Sect. 6.4.4.1, to some degree redundant. Moreover, if a fast reacceleration of the ions
leaving the RFQ becomes dispensable, a slower ion beam might provide a longer
laser-ion interaction in the fluorescence detection region. The resulting higher signal
intensity/detection efficiency for CLS has not been tested yet and is to be investi-
gated.

6.6.2 Applications of Ion Bunchers in CLS

The main background source of classical CLS with optical fluorescence detection
is of continuous nature. It is typical detector noise of the PMTs and the usually
dominant laser straylight created inside the vacuum beamline and scattered onto the
PMTs. Typical rates are of the order of a few 1000 to 10,000 counts per second,
covering the desired fluorescence signal of weak ion beams. By gating the optical
detection count rate synchronized with the ion bunch passing the PMT in the detec-
tion region, this continuous background is suppressed. The suppression factor S can
be simply estimated by the ratio of the sampling and cooling time T and the bunch
length tgate as

S = T

tgate
. (6.71)

The timing scheme and a typical time structure of a cooled bunch is demonstrated
in Fig. 6.18. The opening of the RFQ’s axial confinement is much shorter than the
accumulation time tcool and the cycle is then repeated with a periodicity time T . The
right half of Fig. 6.18 displays a typical time-of-flight (TOF) structure of a bunch of
101Cd ions, recorded by fluorescence photons [99] at the COLLAPS setup. The ab-
scissa displays the time relative to the opening of the RFQ and thus the ions time of
flight from the RFQ towards the COLLAPS optical detector. A time window tgate of
only 2 µs (depicted by the dotted lines in Fig. 6.18) can be used as coincidence gate
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Fig. 6.18 Schematic timing cycle of the DC-potential of the last RFQ electrodes (left) and the
time structure of a 101Cd ion bunch (right) obtained at ISCOOL (ISOLDE). The bunch structure
was observed by resonance fluorescence detection at the COLLAPS setup and exhibits a temporal
width of about 2 µs after a cooling time of tcool = 50 ms [99]

for the laser spectroscopy data recording. For the TOF spectrum shown in the right
half of figure Fig. 6.18, which was recorded with a cooling time of tcool = 50 ms ≈ T
in the ISCOOL cooler [90, 91] at ISOLDE, a gating window of tgate = 2 µs yields,
according to Eq. (6.71), a background suppression factor of S ≈ 25,000. Practically,
a slightly larger time window was used during the measurements in order to be in-
sensitive to small variations of the flight time. With this technique exotic ion beams
with very low ion yields came into reach for CLS. Figure 6.19 shows laser spectra
of 174Hf from the pioneering work of Nieminen and co-workers [96], which were
simultaneously recorded gated and ungated at the IGISOL facility. The cooling time
was 500 ms, applying a gate window of tgate = 28 µs. Achieving similar background
suppression as given in the example shown in Fig. 6.19, Nieminen et al. extrapolated
a so far unsurpassed lower detection limit for classical CLS with optical detection
of ≈50 ions/s.

It should be mentioned that this technique for background suppression is inef-
fective against ion-beam induced backgrounds, e.g. collision-induced residual gas
fluorescence. In the case of beams with only a few ions of the desired species, this
background is typically dominated by the much more abundant isobaric contamina-
tion in the ion beam. However, ion-beam induced background is typically several or-
ders lower than the laser straylight and therefore negligible. It may become relevant
if a charge exchange reaction is used on a beam with large isobaric contamination
since longer-lived states populated in the CEC can contribute to the background.

At the IGISOL facility a series of refractory elements were studied with bunched
ion beams so far: zirconium [100], titanium and hafnium [101], cerium [102], yt-
trium [46], molybdenum [103], scandium [104] and ytterbium [105]. CLS in combi-
nation with the ISCOOL RFQ at ISOLDE was applied and has been completed for
gallium [106] and copper [107, 108]. The successful introduction of this technique
at the TITAN facility at TRIUMF was recently demonstrated by laser spectroscopy
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Fig. 6.19 Demonstration of bunched-beam laser spectroscopy. Fluorescence spectrum of 174Hf
studied in the ds2 2D3/2 → dsp 2D5/2 transition applying a laser wavelength of 301.3 nm. Both
spectra were simultaneously recorded and accumulated over 25 minutes at an ion yield of
1300 ions/s. (a) gated with tgate = 28 µs and tcool = 500 ms and (b) without gating. (Reprinted
with permission from Phys. Rev. Lett. 88 (2002) 094801 Copyright 2002 American Physical Soci-
ety)

on radioactive rubidium isotopes [109]. A small selection of physics cases will be
exemplified here.

In recent years laser spectroscopy with bunched and cooled beams was applied
at JYFL to study the sudden onset of deformation in the region around Z ≈ 40 and
N ≈ 60 and at ISOLDE to investigate the behavior of copper and gallium isotopes
above the N = 28 shell closure. As an example, studies of neutron-rich gallium
isotopes will be briefly discussed, which would have not been possible without the
sensitivity increase by the RFQ technique: According to the shell model, the ground-
state spin of odd gallium isotopes should be determined by a proton hole in the
πp3/2 state as indicated in Fig. 6.20(a) while the f5/2-orbital is not populated. How-
ever, experimentally an inversion between these states is found “between” 79Ga and
81Ga. This was determined by fitting the observed hyperfine structures of 79,81Ga
depicted in Fig. 6.20(b) for different spin values [110]. The results show a clear
signature for a spin I = 3/2 for 79Ga, as for almost all other odd isotopes of gal-
lium that were studied (with the exception of 75Ga, which has a collective I = 1/2−
ground state [110]) and I = 5/2 for 81Ga. This change can be explained by the ten-
sor force between neutrons and protons induced by pion exchange [111, 112]. The
monopole component of this force leads to an attraction of states which have �l and
�s coupled in the same way, i.e. either to j> = l + s or to j< = l − s, whereas it is
repulsive between proton and neutron states j< and j>. Since the induced shift of
the single-particle energy of a level j caused by the monopole interaction increases
linearly with the number of nucleons in the interacting state j ′, it can induce con-
siderable changes along a chain of isotopes (or isotones). The observed inversion in
gallium is caused by the filling of the νg9/2 subshell starting with 71Ga. The νg9/2
level is of type j< thus the increasing number of neutrons reduces the energy of
the πf5/2 and increases the energy of the proton in the πp3/2 level (j>) until the
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Fig. 6.20 (a) Population of nuclear orbitals of gallium isotopes according to the standard shell
model. Indicated is the influence of the monopole moment of the tensor force acting between
neutrons in the ν g9/2-orbital and protons in the π p3/2, and π f5/2 orbitals. (b) Hyperfine splitting
of 79Ga and 81Ga. The spectra must be fitted with different spins (I = 3/2 for 79Ga and I = 5/2
for 81Ga) in order to get consistent results. (c) Calculation of proton single-particle energies of
68–78Ni as a function of neutron number [112]

πf5/2 becomes the ground state. For illustration this is shown in Fig. 6.20(c) where
the calculated proton single-particle energies for 68–78

28Ni are plotted as a function
of neutron number [112]. The dotted lines represent calculations without the tensor
force (central force only) and the solid lines include the tensor force. The strong re-
duction of the πf5/2 energy is clearly visible and the crossing with the πp3/2 orbital
appears around N = 45.

Besides the increase of sensitivity with bunched ion beams, the accumulation
and cooling time in the RFQ provides a possibility for measuring lifetimes of nu-
clear isomers as an additional spin-off: In a few cases the laser spectroscopy pattern
of a well mass-separated ion beam provides more lines than expected from a single
isotopic species. This fact can then be attributed to the simultaneous presence of
radioactive isotopes in the ion beam not only in the nuclear ground state but also to
a certain amount in one or more isomeric states. In order to distinguish among these
nuclear states, the cooling and therewith the retention time of the radioactive ions in-
side the RFQ can be varied and prolonged. Thus the observed transition lines which
are caused by the shorter-lived species will become weaker, as they are decaying
during the cooling time and will be suppressed in the observed spectrum.

This allows for an identification of the lifetime difference of the components
and in conjunction with a known ground-state life-time may be used to measure or
at least to estimate a life-time of the isomeric state. However, it should be noted,
that an unambiguous identification of the ground state and the isomeric states is not
possible solely by laser spectroscopy if no additional information about the ground
state is available (e.g. spin, lifetime etc.). In that case only mass measurements or
radioactive decay spectroscopy can provide the required information. But laser res-
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onance ionization may provide means to know which ions are injected into the trap
or delivered to the decay-spectroscopy setup, as demonstrated, e.g., in [113].

In case of rather long-lived states no influence of the constituents can be observed
by varying cooling times. Consequently the longest applied cooling time, which did
not show any decay losses in the RFQ, can then serve at least as an estimate for
the lower limit of the states lifetimes. This was for example conducted for 80Ga and
provided a lower lifetime limit for the isomer 80,mGa of T1/2 ≥ 200 ms [110].

6.6.3 Optical Pumping in the Cooler and Buncher

The atomic state delivered from the ion source—in most cases the ionic ground
state—may present a bottleneck which hampers laser spectroscopy for various rea-
sons:

1. In some cases laser excitation from the ground state (GS) of the ion into the first
excited state (FES) is technically hard to access with high-resolution CW lasers
due to a required wavelength in the deep ultraviolet regime. Wavelengths below
250 nm are hard to realize using higher harmonics generation. Even though CW
frequency-quadrupling has been recently applied to generate 215 nm for laser
spectroscopy on cadmium [99], its technical complexity makes it inconvenient
for routine operation.

2. Some elements suffer from weak oscillator strengths of their ground-state tran-
sitions. From this it follows that the transition can only be weakly driven by
reasonable laser powers and that the FES has either a weak branching ratio back
into the ground state or a relatively long life-time. Both cases strongly reduce the
fluorescence signals that can be obtained while the ions are passing through the
optical detection region. Charge exchange to the neutral atom might also not be
the best option if it is non-resonant and results in a wide distribution of populated
states.

3. Not only technical but also physical constraints make certain transitions from
the ground state inappropriate for spectroscopic studies of nuclear moments. Es-
pecially J = 0 → J = 1 transitions have the drawback that the corresponding
hyperfine structure splitting will provide at maximum 3 lines, from which a si-
multaneous and independent determination of the magnetic dipole moment μI ,
the spectroscopic electric quadrupole moment Q0, isotope shift δνAA

′
IS and the

nuclear spin I is not possible. For this purpose transitions from metastable, states
with a higher J value are preferred.

In all of these three cases a laser-based optical manipulation of the ions might
offer an appropriate tool to use transitions that are better suited for CLS. Ideally this
manipulation takes place during the cooling and accumulation time in a gas-filled
RFQ, as described above, since this provides sufficient laser-ion interaction time and
a well-matched ion confinement for efficient geometrical overlap of the ions with
the laser beam. Centerpiece of this manipulation is the excitation by high-power
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Fig. 6.21 Shown on the left side is the general working principle of optical pumping in the RFQ
applying pulsed lasers for population of a new meta-stable starting point for high resolution laser
spectroscopy. As an example application, the optical pumping and spectroscopy scheme for singly
charged yttrium ions [114] is shown on the right

(pulsed) lasers8 from the GS and—with the aid of an supportive branching-ratio—
subsequent relaxation into a meta-stable state that serves as a new “ground state”
GS* for laser spectroscopy. This process is illustrated in Fig. 6.21 and generally
known as one instance of optical pumping. From this metastable state spectroscopy
can then be performed with appropriate transitions for laser excitation.

The laser system which is ideally suited for optical pumping differs from the
spectroscopy laser system in many ways as it has to meet the following technical
requirements:

• the laser system should be pulsed, as (opposite to CW lasers) this enables simple
and efficient higher harmonic generation of the second, third and fourth harmonic
due to the high energy density in the laser pulse

• the repetition rate νrep should be sufficiently high (νrep � t−1
cool). Otherwise the

ions can not run through several excitation cycles for optical pumping before the
bunch is being extracted out of the RFQ.

• for efficient laser excitation the laser linewidth should be matched to the spectro-
scopic linewidth of the ion ensemble in the RFQ. Although the natural linewidth
of these allowed dipole transitions in the ion is usually of the order of a few MHz
only, the buffer gas interaction inside the RFQ leads to a collision-broadening and
results in a linewidth of typically several GHz.

In pioneering experiments at the IGISOL-facility a Ti:Sa laser system with a rep-
etition rate of νrep = 10 kHz [115] was used, which was originally designed for
laser-ion-source applications [116]. The efficiency of optical pumping was demon-
strated by Cheal and coworkers for example in a test measurement using Y+ ions

8High-power lasers in this respect means lasers with higher output power than typically available
for CW high-resolution laser spectroscopy.
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Fig. 6.22 Effect of optical pumping on the ground state population of a cooled yttrium ion bunch
at the IGISOL facility [117]. The solid line represents a CW laser spectroscopic resonance in the
311-nm transition from the ground state as it is depicted in the inset. The dotted line represents
the response after applying optical pumping along the 224 nm transition. The pumping process
apparently transfers the ground state population efficiently into other levels and a fluorescence
signal cannot be observed anymore. (Reprinted with permission from Phys. Rev. Lett. 102, 222501
Copyright 2009 American Physical Society)

[117]. The result is depicted in Fig. 6.22. When exciting the yttrium ions from the
ground state with classical collinear laser spectroscopy and using a CW laser at a
wavelength of 311 nm, the hyperfine resonance pattern represented by the solid line
was observed. The response after optical pumping with the pulsed Ti:Sa laser sys-
tem at 224 nm is represented by the dotted line. It shows that the optical pumping
process with this pulsed laser system is very efficient and apparently the ground
state population is almost completely removed.

A number of refractory transition elements has been studied so far utilizing the
optical pumping method. In the case of manganese the challenging wavelengths for
the transitions from the ground state were circumvented by optical pumping with
frequency quadrupled pulsed laser light at 231 nm. Subsequent high-resolution laser
spectroscopy was performed at 295 nm starting from the 3d5 4s state at 9473 cm−1

above the ions ground state [118]. A very weak oscillator strength has been over-
come in the case of niobium by optically pumping with laser light at 286 nm again
with pulsed lasers and performing nuclear laser probing with CW laser light at
291 nm starting from the 4d3 5s level at 2357 cm−1 [117]. In the case of niobium as
well as in the on-line studies of 100Y an unambiguous spin determination was ham-
pered by the J = 0 → J = 1 transition from the ground state [114]. Applying the
optical pumping scheme with the adjacent spectroscopy transition shown in detail
on the right side of Fig. 6.21, the nuclear spin of the isomer 100,mY has been deter-
mined and in combination with γ -spectroscopic data the ground state configuration
was identified.
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The optical pumping method has a high potential and can be extended to other
transition metals and probably even beyond. Up to now this technique was only
applied at the IGISOL facility, but can be transferred to other RFQ cooler and
buncher installations as long as they provide optical access. Studies of manganese
isotopes including optical pumping in ISCOOL are currently planned for example
at ISOLDE/CERN [119].

6.7 Future Prospects

Laser spectroscopy of radioactive nuclides has now been performed in quite a sub-
stantial part of the chart of nuclei [17, 18]. However, the most interesting regions
close to the proton and neutron drip lines have been reached in only a few cases.
In addition, information is scarce in the region of refractory elements around iron
(Z = 26) because of the lack of efficient production schemes at ISOL facilities.
Similarly, there are gaps in the region of refractory elements around molybdenum
(Z = 42) and tungsten (Z = 74).

A major challenge in the upcoming years will be the coupling of CLS stations to
the next generation in-flight facilities. In contrast to the ISOL-type ion production
mechanism, the in-flight method forms a radioactive ion beam from fragments of a
nuclear reaction of relativistic projectiles with atoms in a thin target. The demand-
ing task is the transformation of the resulting relativistic fragment beam with the
inherent huge emittance and energy-spread into a narrow collimated ion beam with
narrow energy distribution and low emittance, so that it can be efficiently used for
CLS.

The transformation of the in-flight fragment ion beam is accomplished in dedi-
cated ion catcher devices, so-called “gas-cells”. These vacuum chambers are filled
with noble gas (typically helium) at pressures of the order of a few tens to several
hundreds of mbar and are internally equipped with different versions of drift and
guidance electrodes outside a stopping region inside the gas. The ions are entering
the gas cell after being slowed down by the passage through previous solid-state
energy degraders and create a large number of electron-ion pairs in the gas (in the
order of 1 pair per 10–100 eV energy loss of the initial ion in high purity helium gas,
depending on experimental conditions). Common to most9 of the gas cells are (i) the
inside lining of the gas cell walls with so-called radio-frequency carpets [120] which
keep the heavy ions away from the walls and (ii) the extraction of the buffer gas
cooled ions at the transition from the high pressure regime to the vacuum through a
thin exit nozzle, in some cases carried out as a radio-frequency orifice.

The individual technical realizations of these gas cells are diverse. Based on the
successful operation at the ATLAS facility, a conventional cylindrical gas cell [121]
operated at room temperature has been implemented at the CARIBU facility [122]

9Exception here are small cells as used, e.g., for ion-guide applications at Jyväskylä or Louvain-
la-Neuve.
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at Argonne National Laboratory. A speciality here is that the radioactive isotopes
are not injected but directly created inside the gas cell by spontaneous fission of
a macroscopic amount of 252Cf. For the BECOLA laser spectroscopy experiment
[123] at the Michigan State University the radioactive ions produced in-flight in
the A1900 fragment separator (and in the future from the FRIB accelerator) are
moderated in a gas cell as well. Upstream of the BECOLA beamline the ions will
be either injected into a conventional gas cell similar to the one at Argonne National
Laboratory or into an inverted10 cyclotron [124]. The latter has the advantage of
decoupling the region of where the most parasitic space charges are created from
the region where the thermalized ions are finally stopped and extracted. Due to the
spiral shape of the ions trajectory in the magnetic field, even long flight paths before
stopping are feasible in the cyclotron. This allows for comparably lower buffer gas
pressures inside the structure with all its advantages such as shorter transport time
of the cooled ions and higher applicable potentials in the gas [124].

The LASPEC collinear laser spectroscopy experiment [125, 126] will be placed
at the low-energy branch of FAIR’s Super-Fragment-Separator and supplied from
a linear gas cell. Deviating from all of the other gas cells mentioned above, this
one is operated at a cryogenic temperature of about 60–80 K [127]. This provides
higher gas densities (for helium: 250 mbar at 60 K ≈ 0.2 mg/cm3 provides a similar
stopping power as 1200 mbar pressure at room temperature [127]) and therefore the
cell is more compact than conventional cells at room temperature. The cryogenic
operation of the He gas additionally removes the necessity of a gas purification
system aiming for a 1-ppb impurity level or even better, because contaminations to
the He buffer gas or outgassing from the electrode materials are just frozen out. First
tests have recently been successfully conducted at the current fragment separator at
GSI [128].

Applying gas cells will extend the range of accessible isotopes for laser spec-
troscopy further away from the region of β-stability towards the so-called r-process
path, as well as into regions that are currently not accessible. The final limitation
besides the limited yield from the in-flight production process is the individual ex-
traction time out of the gas cell. Exotic species will only be available if the time
span required for extraction and reacceleration is shorter than or at least comparable
to the lifetime of the exotic ion.

Moreover, a variety of new CLS experiments have recently started or are un-
der preparation at on-line facilities. In combination with the installation of the
TITAN-facility [129] at TRIUMF, the local CLS station—previously mostly ap-
plied for the generation of optically polarized beams of 8Li for nuclear magnetic
resonance studies—gained new momentum [109]. Within the Spiral-2 upgrade
at DESIR/GANIL there will be a designated beamline for a CLS station called
LUMIERE [130], which is currently under preparation.

Future developments of CLS in the near future will further focus on increasing
sensitivity and—for special purposes—accuracy. The increase in sensitivity will be

10“Inverted” as it decelerates instead of accelerates the ions, as in typical applications of cyclotrons.
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derived from the ongoing evolution of the methodical developments discussed in the
previous sections. There are two starting-points for an increase in accuracy:

• Laser wavelength control and measurement by means of modern quantum op-
tics. The laser wavelength stabilization can be implemented with a modern, com-
pact fibre-laser based frequency comb, as demonstrated for the CLS measurement
along the isotopic chain of beryllium [51] at COLLAPS. With this technique the
laser frequency can be controlled even during longer experimental runs or can
even be reproduced after a longer experimental break (e.g. between two exper-
imental campaigns) with better than 1 MHz accuracy and/or repeatability. The
TRIGA-LASER setup [131], which is a prototype of a part of the LASPEC setup,
applies this technique routinely. At the BECOLA experiment the implementation
of this technique is intended as well.

• Improvement of the acceleration-potential measurement. This second aspect for
increasing the accuracy of CLS addresses the measurement of the initial acceler-
ation potential of the ion source or RFQ, if applicable, as well as the high voltage
of the Doppler-tuning voltage applied either to the FDR or the CEC. With typical
equipment at the various on-line facilities, these voltages can be determined with
an accuracy and reproducibility of about 100 ppm at best. This represents a limit,
especially for light elements as discussed above.

This uncertainty in the acceleration potential had already a verifiable impact in
the past: In a sequence of experiments on magnesium ions at ISOLDE, a discrep-
ancy in the isotope shift measurements was observed which could be attributed to
the use of different high voltage measurement systems. After a recalibration of both
devices [132] with one of the world most precise voltage-dividers with ppm accu-
racy [133], the results of the individual beamtimes have been brought in agreement
with each other [132] as well as (within systematical and statistical uncertainties)
with independent high-accuracy ion-trap laser spectroscopy on stable magnesium
isotopes as reported in [134].

The utilization of a mobile voltage divider with stabilized environmental condi-
tions, which is aiming for a 10-ppm accuracy and stability and an applicability up
to 100 kV is currently under development at the TRIGA-Laser experiment and the
Technical University of Darmstadt. In case of a successful completion of this devel-
opment, a few mobile devices of this type, which are than more sophisticated than
any commercially available solution, can be transported to different on-line facilities
for high-voltage measurement and monitoring during an on-line beamtime or in or-
der to assure identical conditions among two consecutive experimental campaigns.

6.8 Conclusion

After the proposal of collinear laser spectroscopy in 1976 [8] and its first realization
in 1977 [9], a variety of laser spectroscopy stations have been initiated and oper-
ated at different places all over the world. Nevertheless, throughout the last three
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decades only the collinear laser spectroscopy experiment at the IGISOL facility
and the COLLAPS experiment at ISOLDE/CERN have been and still are the work
horses for laser spectroscopy on a broad spectrum of radioactive isotopes. Affected
by the impact and success of these studies and the continuous technical develop-
ment, partially described in this lecture, the advent of the next generation on-line
radioactive ion beam facilities initiated a renaissance of collinear spectroscopy all
over the world.
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Chapter 7
The Nuclear Energy Density Functional
Formalism

T. Duguet

7.1 Introduction

7.1.1 Generalities

Low-energy nuclear physics aims at addressing several fundamental, yet only par-
tially answered, questions. Among those are (i) how do neutrons and protons bind
inside a nucleus and what are the limits of existence of the latter regarding its mass,
neutron-proton imbalance, angular momentum . . . ? (ii) How to explain the complex
phenomenology of nuclei starting from elementary two-, three-. . . A-nucleon (AN)
interactions? (iii) How do the latter interactions eventually emerge from quantum
chromodynamics (QCD)? Such questions have numerous ramifications and impli-
cations such that partial answers to them continuously impact other fields of physics
(e.g. astrophysics, tests of the Standard Model). In spite of over eighty years of the-
oretical and experimental studies, low-energy nuclear physics remains an open and
difficult problem. While extensive progress has been made, an accurate and univer-
sal description of low-energy nuclear systems from first principles is still beyond
reach.

The first difficulty resides in the inter-particle interactions at play. Strong inter-
nucleon interactions relevant to describing low-energy phenomena must be mod-
elled within the non-perturbative regime of the gauge theory of interacting quarks
and gluons, i.e. QCD. Within such a frame, nucleons are assigned to spin and isospin
SU(2) doublets such that they are 4-component fermions interacting in various con-
figurations stemming from invariances of the problem, e.g. they interact through
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central, spin-orbit, tensor, quadratic spin-orbit . . . couplings. In addition to its com-
plex operator structure, the 2N force produces a weakly-bound neutron-proton state
(i.e. the deuteron) in the coupled 3S1–3D1 partial waves and a virtual di-neutron
state in the 1S0 partial wave. Associated large scattering lengths, together with
the short-range repulsion between nucleons make the nuclear many-body problem
highly non-perturbative. In addition to such difficulties, the treatment of 3N , 4N . . .
interactions in a theory of point-like nucleons is unavoidable. This has become clear
over the last fifteen years as one was aiming at a consistent understanding of (i) dif-
ferential nucleon-deuteron cross-sections [1], (ii) the under-estimation of triton and
light-nuclei binding energies [2], (iii) the Tjon line [3], (iv) the violation of the
Koltun sum rule [4] and (v) the saturation of symmetric nuclear matter [5, 6] in
connection with the Coester line problem [7, 8].

The second difficulty stems from the nature of the system of interest. Most nuclei
(i.e. those with masses typically between 10 and 350) are by essence intermediates
between few- and many-body systems. As a result (i) most nuclei are beyond theo-
retical and computational limits of ab-initio techniques that describe the interacting
system from basic AN forces, while (ii) finite-size effects play a significant role,
which prevents statistical treatments. Furthermore, a unified view of low-energy
nuclear physics implies a coherent description of small- and large-amplitude collec-
tive motions, as well as of closed and open systems, e.g. of the structure-reaction
interface that is mandatory to understand spontaneous and induced fission, fusion,
nucleon emission at the drip-line . . . .

The study of the atomic nucleus aims at accessing its ground-state (mass, radius,
deformation and multipolar moments . . . ) and excited-states (single-particle, vibra-
tional, shape and spin isomers, high-spin and super-deformed rotational bands . . . )
properties as well as the various decay modes between them (nuclear, electromag-
netic and electroweak), together with reaction properties (elastic and inelastic scat-
tering, transfer and pickup, fusion . . . ). This is to be achieved for systems over
the nuclear chart, i.e. not only for the nearly 3100 observed nuclei [9] but also for
the thousands that are still to be discovered. In that respect, a cross-fertilization
between theoretical and experimental studies is topical, with the advent of (i) a
new-generation of radioactive-ion-beam (RIB) facilities producing very short-lived
systems with larger yields, and (ii) high-sensitivity and high-selectivity detectors
allowing measurements with low statistics. Upcoming facilities based on in-flight
fragmentation, stopped and reaccelerated beams or a combination of both are going
to further explore the nuclear chart towards the limits of stability against nucleon
emission, the so-called neutron and proton drip-lines. The study of highly neutron-
rich nuclei will help understand the astrophysical nucleosynthesis of about half of
the nuclei heavier than iron through the conjectured r-process. The access to nuclei
with a large neutron-over-proton ratio has already started to modify certain corner-
stones of nuclear structure, e.g. some of the “standard” magic numbers are signif-
icantly altered while others (may) appear [10]. When adding even more neutrons,
the proximity of the Fermi energy to the particle continuum gives rise to exotic
phenomena, such as the formation of light nuclear halos [11, 12] with anomalously
large extensions [13, 14] or the existence of di-proton emitters [15, 16]. In addi-
tion to reaching out to the most exotic nuclei, experiments closer to the valley of
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stability still provide critical information. For instance, precise mass measurements
using Penning traps [17] or Schottky spectrometry [18] not only refine and extend
mass difference formulæ [19] to better understand nuclear structure properties, e.g.
pairing correlations, but also contribute to testing the standard model of particle
physics, e.g. recent mass measurements have helped refine the validation of the
unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) flavour-mixing matrix [20].
Eventually, other limits of existence are of key importance, e.g. the quest for su-
perheavy elements and the conjectured island of stability beyond the Z = 82 magic
number [21]. In addition to the quoted references, we refer the interested reader to
Vols. 1–3 of this series that contain many contributions relevant to the topics alluded
to just above.

7.1.2 Nuclear Structure Theory

In such a context, the challenge of contemporary nuclear structure theory is to de-
scribe, in a controlled1 and unified manner, the entire range of nuclei along with
the equation of state of extended nuclear matter, from a fraction to few times nu-
clear saturation density and over a wide range of temperatures. All such properties
find an interesting outcome in the physics of neutron stars and supernovae explo-
sions as well as in the nucleosynthesis of heavy elements as already alluded to
above.

7.1.2.1 Ab Initio Methods

While bulk properties of nuclei can be roughly explained using macroscopic ap-
proaches such as the liquid drop model (LDM) [22, 23], microscopic techniques are
the tool of choice for a coherent description of static and dynamical nuclear proper-
ties. This leads to defining the class of so-called ab-initio methods that consists of
solving, as exactly as possible, the nuclear many-body problem expressed in terms
of elementary 2N , 3N , 4N . . . interactions. For three- and four-nucleon systems,
essentially exact solutions of the Faddeev or Yakubowski equations can be obtained
using realistic vacuum forces [2, 24, 25]. Likewise, Green’s function Monte-Carlo
(GFMC) calculations [26, 27] provide a numerically exact description of nuclei up
to carbon starting from local 2N and 3N vacuum forces, although such a method
already faces huge numerical challenges for 12C. Complementary ab-initio meth-
ods allow the treatment of nuclei up to A ≈ 16, e.g. (i) the no-core shell model
(NCSM) [28] that projects the interacting problem on a truncated harmonic oscil-
lator model space or (ii) lattice effective field theory (LEFT) [29] that propagates

1The notion of “controlled” description refers to the capability of estimating uncertainties of vari-
ous origins in the theoretical method employed.
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nucleons as point-like particles on lattice sites interacting via pion exchanges and
multi-nucleon operators.

In the last ten years, a breakthrough has occurred that renders possible the ab-
initio calculation of double closed-shell nuclei, along with those in their immediate
vicinity, with masses up to A ≈ 60 on the basis of realistic 2N and 3N interac-
tions. Three methods have been developed in order to move in this direction. First is
Coupled-cluster (CC) theory [30, 31], which constructs the correlated ground-state
from a product state using an exponentiated cluster expansion, truncated to B-body
operators (typ. B ∼ 2–3). Second, self-consistent Green’s function (SCGF) the-
ory [32, 33] computes the approximate dressed one-body Green’s function describ-
ing the propagation of a nucleon propagating within the correlated medium. Last
but not least, in-medium similarity renormalization group (IMSRG) method [34, 35]
proceeds to the decoupling of a finite-density reference state from excitations built
on top of it via a sequence of infinitesimal renormalization group transformations.
The frontier in the development of such ab-initio many-body methods is not only to
push calculations to higher masses but also to extend them to truly open-shell sys-
tems. Decisive steps are taken in this direction for SCGF [36, 37], IMSRG [38] and
CC [39] theories. This is meant to extend the reach of ab-initio calculations from a
few tens to several hundreds of mid-mass nuclei.

7.1.2.2 The Configuration Interaction Method

Accessing even heavier systems requires more drastic approximations to the inter-
acting many-body problem. Part of the physics that cannot be treated explicitly is
accounted for through the formulation and use of so-called in-medium interactions.
The configuration interaction (CI) model [40], i.e. shell model (SM), constructs a
model space within which valence nucleons interact through an effective interac-
tion that compensates for high-lying excitations outside that model space as well
as for excitations of the core that are not treated explicitly. Even though such an
effective interaction can be constructed starting explicitly from elementary interac-
tions [41], certain combinations of two-body matrix elements2 need to be slightly
refitted to experimental data within the chosen model space (sd, pf. . . ) to correct for
the so-called monopole part of the interaction. Based on the conjectures that wrong
monopoles originate from the omission of the 3N force in the starting vacuum
Hamiltonian [43], the non-empirical SM based on diagrammatic techniques3 from
renormalized 2N and 3N interactions is currently being revived [44] and shows
promising results [45, 46]. Eventually, spectroscopic properties can be described

2In the sd shell for example, it is necessary to (slightly) refit about 30 combinations of two-body
matrix elements in order to reach about 140 keV root mean square error on nearly 600 pieces of
spectroscopic data [42].
3The adjective “diagrammatic” refers to many-body methods relying on the use of Feynman or
Goldstone diagrams.
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with high accuracy using refitted effective interactions [40, 42]. Still, improved ac-
curacy is needed in the SM to use nuclei as laboratories for fundamental symmetries,
e.g. to provide the matrix elements needed for the search of neutrinoless double-beta
decay [47].

7.1.2.3 The Nuclear Energy Density Functional Method

Last but not least, the theoretical tool of choice for the microscopic and system-
atic description of medium- and heavy-mass nuclei is the energy density functional
(EDF) method [48, 49], often referred to as “self-consistent mean-field and beyond-
mean-field methods”. Such method has been empirically adapted from well-defined
wave-function- and Hamiltonian-based approaches. Based on a relativistic or a non-
relativistic framework, the EDF method aims at providing, within one consistent
frame, (i) the detailed and complete description of specific nuclei of interest, (ii) sys-
tematic trends over a large set of nuclei and (iii) trustful extrapolations in the re-
gion of the nuclear chart where experimental data are and will remain unavailable.
Thanks to a favourable numerical scaling, the EDF method is indeed amenable to
systematic studies of systems with large numbers of nucleons, independent of their
expected shell structure. The idealized infinite nuclear matter system relevant to the
description of compact astrophysical objects such as neutron stars is accessible to
EDF calculations as well.

A fundamental aspect of the method is that it relies heavily on the concept of
spontaneous breaking and restoration of symmetries. As such, the nuclear EDF
method is intrinsically a two-step approach,

1. The first step is constituted by the so-called single-reference EDF (SR-EDF) im-
plementation, originally adapted from the symmetry-unrestricted Hartree Fock
Bogoliubov (HFB) method by using a density-dependent effective Hamilton “op-
erator” [50]. Later, the approximate energy was formulated directly as a possi-
bly richer functional of one-body density matrices computed from a symmetry-
breaking HFB state of reference. The power of the approach relies on its ability
to parametrize the bulk of many-body correlations under the form of a functional
of one-body density (matrices) while authorizing the latter to break symmetries
dictated by the underlying Hamiltonian in order to account for static collective
correlations. It is however difficult, if not impossible, to capture in this way the
subsequent dynamical correlations associated with good symmetries and quan-
tum collective fluctuations.

2. It is thus the goal of the second step, carried out through the multi-reference
(MR) extension of the SR-EDF method, to grasp such long-range correlations.
The MR-EDF implementation has been adapted from the generator coordinate
method (GCM) performed in terms of symmetry-projected HFB states [51].
Within the EDF context, the MR step necessitates a prescription to extend the
SR energy functional4 associated with a single auxiliary state of reference to the

4I.e. the density-dependence of the effective Hamilton operator in the traditional formulation.
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Fig. 7.1 Upper panel: halo
parameter δRhalo [57]
extracted for nearly five
hundreds (predicted)
spherical nuclei using the
SLy4 [58] Skyrme
parametrization. Lower
panel: halo parameter δRhalo
computed for drip-line
chromium isotopes. The halo
parameter δRhalo quantifies in
a model-independent fashion
the contribution of the halo
structure to the nuclear
radius [57]. The colour scale
refers to a length indicated in
Fermi. Large discrepancies in
the prediction of the drip-line
position and in the extracted
halo parameter are obtained
from the selection of
parametrizations used. Taken
from Ref. [59]

non-diagonal energy kernel associated with a pair of reference states. Although
constraints based on physical requirements have been worked out that limit the
number of possible prescriptions [52], no first-principle approach to the formula-
tion of such an extension exists today. Although this could have simply remained
an academic issue with no measurable consequence, it has been realized recently
that the lack of rigorous roots of the EDF method, and in particular of its MR
implementation, is responsible for problematic pathologies [53–56].

Modern parametrizations of the nuclear EDF, i.e. Skyrme, Gogny, or relativistic
energy functionals, provide a good description of ground-state properties and, to
a lesser extent, of spectroscopic features of known nuclei. Still, as of today, EDF
parametrizations are phenomenological as they rely on empirically-postulated func-
tional forms whose free coupling constants are adjusted on a selected set of experi-
mental data. This raises questions regarding (i) the connection between currently
used EDF parametrizations and elementary AN forces, which is neither explicit
nor qualitatively transparent, and regarding (ii) the predictive power of extrapolated
EDF results into the experimentally unknown territory. Their lack of microscopic
foundation often leads to parametrization-dependent predictions away from known
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data, i.e. to significant systematic errors, and makes difficult to design systematic
improvements. Such a feature is illustrated in Fig. 7.1 for a particular observable of
interest related to the prediction of halo structures and the location of the neutron
drip-line in medium-mass nuclei [57, 59]. Some systematic limitations of existing
EDFs have been empirically identified [60–63] over the last decade that relate to
their (too) simple analytical representations and to the biases in their adjustment
procedure, as well as to the lack of a solid microscopic foundation. Fuelled by
interests in controlled extrapolations of nuclear properties in isospin, density, and
temperature, efforts are currently being made to develop energy functionals with
substantially reduced errors and improved predictive power. One possible path for-
ward focuses on empirically improving the analytical form and the fitting procedure
of existing phenomenological functionals [60, 61, 64–69].

In order to improve on the limitations alluded to above and make EDF calcula-
tions truly reliable, several routes must be followed in the future. On the one hand, a
better understanding of the foundations of the method and an explicit connection to
elementary inter-nucleon interactions must be realized. On the other hand, empiri-
cally adjusted parametrizations must rely on advanced fitting and statistical analysis
techniques.

7.1.3 Goal of the Present Lecture Notes

The present lecture notes focus on the theoretical foundations of the nuclear energy
density functional method. As such, they do not aim at reviewing the status of the
field, at covering all possible ramifications of the approach or at presenting recent
achievements and applications. For standard reviews that cover the connection to
empirical data, we refer the reader to Refs. [48, 49]. In order to achieve our goal
within the limits of the present document, the following choices are made in the
following

1. the historical perspective is bypassed,
2. the presentation is limited to the non-relativistic framework,
3. time-dependent implementations of the method are not discussed,
4. the Skyrme family of parametrizations is used for illustration,
5. only the full fledged multi-reference formalism is discussed,5

6. applications are only shown to illustrate points of the formal discussion.

The objective is to provide a modern account of the nuclear EDF formalism that
is at variance with traditional presentations that rely, at one point or another,
on a Hamiltonian-based picture. The latter is not general enough to encompass
what the nuclear EDF method represents as of today. Specifically, the traditional
Hamiltonian-based picture does not allow one to grasp the difficulties associated

5Approximations such as the quasi-particle random phase approximation or the Schroedinger equa-
tion based on a collective (e.g. Bohr) Hamiltonian are only mentioned in passing; see Sect. 7.5.7.
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with the fact that currently available parametrizations of the energy kernel E[g′, g]
at play in the method do not derive from a genuine Hamilton operator, would the
latter be effective. As such, a key point of the presentation provided below is to
demonstrate that the MR-EDF method can indeed be formulated in a mathemati-
cally meaningful fashion even if E[g′, g] does not derive from a genuine Hamil-
ton operator. In particular, the restoration of symmetries can be entirely formulated
without making any reference to a projected state, i.e. within a genuine EDF frame-
work [70]. However, and as will be illustrated below, a mathematically meaningful
formulation does not guarantee that the formalism is sound from a physical stand-
point. We will eventually mention at which price the latter can be ensured as well.

7.2 Prelude

7.2.1 Reference States and Bogoliubov Transformation

The EDF method builds on the effective description of a nucleus made of an ensem-
ble of quasi-particles moving independently in their self-created average field(s).
As such, the approach relies on the use of product states of Bogoliubov type, which
are nothing but a generalization of Slater determinants. To define such many-body
states, let us introduce an arbitrary single-particle basis {|i〉} of the one-body Hilbert
space H1, where {i} collects all spatial, spin and isospin quantum numbers neces-
sary to define a given state. Basis states relate to particle creation operators through

a
†
i |0〉 = |i〉, (7.1)

with {ai, a†
j } = δij . Associated single-particle wave-functions are given by ψi(�rστ)

≡ 〈�rστ |i〉, where σ (τ ) denotes the z component of the spin (isospin) 1/2 nucleon.
From there, fully paired Bogoliubov vacua are defined as

∣∣Φ(g)〉=∏
μ

β(g)μ |0〉, (7.2)

and carry a collective label g whose definition and meaning will be speci-
fied in Sect. 7.2.3.1. Quasi-particle creation and annihilation operators satisfy
{β(g)μ ,β(g)†ν } = δμν and relate to particle operators through the so-called Bogoli-
ubov transformation

β(g)μ =
∑
i

U
(g)∗
iμ ai + V (g)∗iμ a

†
i , (7.3a)

β(g)†μ =
∑
i

V
(g)
iμ ai +U(g)iμ a†

i . (7.3b)
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Matrices U(g) and V (g), respectively made out of vectors U(g)μ and V(g)μ defined on
H1, combine to make up the matrix representation of the Bogoliubov transforma-
tion [51]

W (g) ≡
(
U V ∗
V U∗

)(g)
(7.4)

whose unitarity provides four identities

U(g)U(g)† + V (g)∗V (g)T = 1, (7.5a)

U(g)∗V (g)T + V (g)U(g)† = 0, (7.5b)

U(g)†U(g) + V (g)†V (g) = 1, (7.5c)

U(g)T V (g) + V (g)T U(g) = 0. (7.5d)

Fully paired Bogoliubov states |Φ(g)〉 are denoted as “vacua” in the sense that they
are annihilated by the set of quasi-particle annihilation operators, i.e.

β(g)μ

∣∣Φ(g)〉= 0 ∀μ. (7.6)

Such a notion generalizes the physical vacuum |0〉, which is annihilated by the set
of particle annihilation operators {ai}, and Slater determinants that are annihilated
by the set of operators {ap, a†

h}, where p (h) denote unoccupied (occupied) single-
particle states. Furthermore, Bogoliubov states |Φ(g)〉 break particle-number sym-
metry, i.e. as opposed to Slater determinants they are not eigenstates of the parti-
cle (neutron or proton) number operator N . Still, states defined through Eq. (7.2)
carry an even number-parity quantum number, i.e. they are linear combinations of
eigenstates of N corresponding to even number of particles only. As such, they are
appropriate to the description of even-even nuclei. In a more general setting, one
may consider Bogoliubov states obtained by performing an even number of quasi-
particle excitations on top of a fully paired vacuum or by performing an odd number
of such excitations to access odd number-parity states appropriate to the description
of odd nuclei [71, 72]. In such a situation, reference states carry an additional label,
besides g, to denote the set of quasi-particle excitations that characterizes them.

7.2.2 Elements of Group Theory

The nuclear EDF method relies heavily on breaking and restoring symmetries of
the underlying, i.e. realistic, nuclear Hamiltonian. As of today, state-of-the-art cal-
culations typically take advantage of breaking translational, rotational and particle-
number symmetries, while only restoring the last two. There also exists few calcu-
lations treating (solely) the restoration of linear momentum [73]. In order to tackle
such a key aspect of the method, let us introduce basic elements of group theory.
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We consider the symmetry group G of the nuclear Hamiltonian H . Because it
is the case for the most relevant symmetries, we consider G to be a continuous,
possibly non-abelian, compact Lie group G = {R(α)} parametrized by a set of r real
parameters α ≡ {αi ∈ Di; i = 1, . . . , r} defined over a domain of definition DG ≡
{Di; i = 1, . . . , r}. We thus have [R(α),H ] = 0 for any R(α) ∈ G . The invariant
measure on G is defined as dm(α) and its volume is given by

vG ≡
∫
DG

dm(α). (7.7)

Next, we introduce the set of infinitesimal generators �C = {Ci; i = 1, . . . , r} that
make up the Lie algebra and in terms of which any transformation R(α) of the
group can be expressed via an exponential map R �C(α).

We further consider irreducible representations (Irreps) Sλab(α) of the group la-
belled by eigenvalues λ of the Casimir operator Λ. Irreducible representations of
dimension dλ are spanned by states that are also eigenstates of one of the genera-
tors, e.g. C1. Indices “a” and “b” in Sλab(α) refer to the dλ corresponding eigenval-
ues. The unitarity of the Irreps, together with the combination law of two successive
transformations, can be read off

∑
c

Sλ∗ca
(
α′
)
Sλcb(α) =

∑
c

Sλac
(−α′)Sλcb(α)= Sλab(α − α′), (7.8)

where arguments −α and α−α′ symbolically denote parameters of transformations
R−1(α) andR−1(α′)R(α), respectively. Additionally, the orthogonality of the Irreps
reads ∫

G
dm(α)Sλ∗ab (α)Sλ

′
a′b′(α)=

vG

dλ
δλλ′δaa′δbb′ . (7.9)

Any function f (α) defined on DG can be decomposed over the Irreps of the group
according to

f (α)≡
∑
λab

f λabS
λ
ab(α), (7.10)

which defines the set of expansion coefficients {f λab}.
Later on, we wish to apply above considerations to two groups of particular in-

terest, i.e. the abelian group U(1) associated with particle-number symmetry and
the non-abelian group SO(3) associated with rotational symmetry. The relevant ele-
ments and equations at play for each of these two cases can be deduced from above
using correspondence Table 7.1. In the case of U(1), decomposition (7.10) of a
function f (ϕ) defined on DU(1) = [0,2π], i.e. its Fourier expansion, reads

f (ϕ)≡
∑
m

fmeimϕ. (7.11)
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Table 7.1 Characteristics of SO(3) and U(1) relevant to the present study. The gauge angle
parametrizing U(1) is ϕ ∈ [0,2π] whereas Euler angles parameterizing SO(3) areΩ ≡ (α,β, γ ) ∈
[0,4π]×[0,π]×[0,2π]. One-dimensional Irreps of U(1) are labeled bym ∈ Z whereas (2J +1)-
dimensional Irreps of SO(3) are labeled by 2J ∈N and are given by the so-called Wigner functions
DJMK(Ω) [74], where (2M,2K) ∈ Z

2 with −2J ≤ 2M,2K ≤+2J

G α dm(α) vG �C Λ C1 R �C(α) Sλab(α) dλ

U(1) ϕ dϕ 2π N N2 – eiNϕ eimϕ 1

SO(3) α,β, γ sinβdαdβdγ 16π2 �J J 2 Jz e−iαJz e−iβJy e−iγ Jz DJMK(Ω) 2J + 1

Similarly, the decomposition of a function f (Ω) defined on DSO(3) = [0,4π] ×
[0,π] × [0,2π] over Irreps of SO(3) reads

f (Ω)≡
∑
JMK

f JMKDJ
MK(Ω), (7.12)

where DJ
MK(Ω) denotes the so-called Wigner function [74].

7.2.3 Collective Variable and Symmetry Breaking

7.2.3.1 Order Parameters

Whenever |Φ(g)〉 breaks a symmetry of the nuclear Hamiltonian, it does not carry
the associated symmetry quantum number(s). The three main symmetries consid-
ered here lead to loosing good total linear momentum �P , total angular momen-
tum (J 2, Jz) and neutron/proton N/Z quantum numbers. Doing so, |Φ(g)〉 acquires
non-zero order parameters, i.e. one per broken symmetry, which we group under
the generic notation g ≡ |g|eiα ≡ 〈Φ(g)|G|Φ(g)〉, where G is an appropriate op-
erator whose average value in a symmetry conserving state is zero. The norm |g|
of the order parameter tracks the extent to which |Φ(g)〉 breaks the symmetry, i.e.
its “deformation”, whereas the phase α = Arg(g) characterizes the orientation of
the deformed body with respect to the chosen reference frame.6 In the present
study, order parameters associated with the breaking of translational, rotational and
particle-number symmetries should be specified. As only the latter two are effec-
tively restored in state-of-the-art calculations, Table 7.2 provides the order param-
eters used to track the breaking of U(1) and SO(3) symmetries. As |g| must be
zero/non-zero for good/broken symmetry states, the anomalous density7 κgg (see
Eqs. (7.19b)–(7.19c)) is a good candidate for U(1). For SO(3), one uses multipole
moments ρλμ of the matter density distribution ρgg0 (�r) (see Eqs. (7.26a)–(7.26f))

6For certain symmetries, e.g. SO(3), the phase α collects in fact several angles. See Table 7.1 for
two relevant examples.
7Although it can be done rigorously, we do not state explicitly here the definition of the norm of κ .
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Table 7.2 Norm and phase
of the order parameters
associated with broken U(1)
and SO(3) symmetries

G |g| α = Arg(g)

U(1) ‖κ‖ ϕ

SO(3) ρλμ (λ > 2J ) α,β, γ

with λ > 2J [75]. As for U(1) the phase α = Arg(g) provides the orientation ϕ of
κgg in gauge space, while for SO(3) it gives the orientation Ω ≡ (α,β, γ ) of the
deformed density distribution in real space.

7.2.3.2 Symmetry-Breaking Reference State

Eventually, states |Φ(g)〉 that are typically dealt with in state-of-the-art calculations
can be written in full glory as∣∣Φ(ρλμΩ;‖κp‖ϕp;‖κn‖ϕn)〉 ≡ R �J (Ω)RN(ϕn)RZ(ϕp)

∣∣Φ(ρλμ0;‖κp‖0;‖κn‖0)〉, (7.13)

where the breaking of U(1) appears once for protons (ϕp) and once for neutrons
(ϕn). Equation (7.13) indicates that the state corresponding to a finite value of the
phase α, i.e. to a given orientation of the “deformed” body, can be obtained from
the one at α = 0 through the application of the rotation operator∣∣Φ(g)〉 ≡ R(α)∣∣Φ(|g|0)〉. (7.14)

7.3 Energy and Norm Kernels

The basic inputs to the nuclear EDF method take the form of the so-called off-
diagonal energy and norm kernels

E
[
g′, g

] ≡ E[〈Φ(g′)∣∣, ∣∣Φ(g)〉], (7.15a)

N
[
g′, g

] ≡ 〈
Φ(g

′)∣∣Φ(g)〉, (7.15b)

that define quantities associated with two product states |Φ(g)〉 and |Φ(g′)〉 possibly
carrying different values of the order parameters.

7.3.1 Norm Kernel

The definition of the norm kernel in Eq. (7.15b) is fully explicit and does not pose
any problem. However, the actual computation of both its phase and its norm has
posed a great challenge to nuclear theorists over the years. It is only recently that a
method to compute N [g′, g] unambiguously in terms of Pfaffian was proposed [76].
This constitutes a rather involved technical discussion that goes beyond the scope
of the present lecture notes. We refer the interested readers to Refs. [76–80].
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7.3.2 Energy Kernel

The energy kernel E[g′, g] is postulated under the form of a general, possibly com-
plicated, functional of |Φ(g′)〉 and |Φ(g)〉. Such a feature lies at the heart of the EDF
approach as a way to effectively sum up the bulk of many-body correlations. Having
no a priori knowledge of the most appropriate functional, one must at least constrain
it to fulfil a minimal set [52, 81] of basic properties.

The first requirement states that transforming both |Φ(g′)〉 and |Φ(g)〉 via any
element R(α′′) ∈ G must leave the kernel invariant, i.e.

E
[〈
Φ(g

′)∣∣R†(α′′),R(α′′)∣∣Φ(g)〉] = E[〈Φ(g′)∣∣, ∣∣Φ(g)〉], (7.16)

which is equivalent to demanding that the kernel only depends on the difference of
phases of the order parameters labelling the two states, i.e.

E
[∣∣g′∣∣α′, |g|α] = E[∣∣g′∣∣0, |g|α − α′]. (7.17)

Such a property is necessary and sufficient to ensure later on that the energy is real
and independent of the reference frame.

Other requirements relate to the behaviour of the kernel in the limit where |Φ(g′)〉
and |Φ(g)〉 are “close” to each other. In case diagonal and off-diagonal kernels were
to be defined through separate means, one must first ensure that they are consis-
tent, i.e. one must ensure that the former is obtained from the latter when taking
|Φ(g′)〉 = |Φ(g)〉. Probing the kernel in the vicinity of the diagonal, one further re-
quires that (i) the chemical potentials λN and λZ obtained through SR calculations
are consistent with their extraction from the Kamlah expansion [82] of the particle
number restored MR energy and that (ii) the quasi-particle random-phase approxi-
mation is recovered from the most general MR scheme whenever |Φ(g′)〉 and |Φ(g)〉
differ harmonically from a common reference state [83, 84]. The latter two require-
ments are fulfilled [52, 81] if, and only if, E[〈Φ(g′)|, |Φ(g)〉] does indeed only de-
pend on the bra 〈Φ(g′)| and on the ket |Φ(g)〉, as was so far implied by the notation
used.

It happens that a sufficient condition for all above properties to be fulfilled is to
postulate that the off-diagonal energy kernel is a functional

E
[
g′, g

]≡E[ρg′g,κg′g,κgg′∗], (7.18)

in the mathematical sense, of normal and anomalous one-body transition (i.e. off-
diagonal) density matrices computed from 〈Φ(g′)| and |Φ(g)〉, respectively defined
through

ρ
g′g
ij ≡ 〈Φ(g′)|a†

j ai |Φ(g)〉
〈Φ(g′)|Φ(g)〉 , (7.19a)

κ
g′g
ij ≡ 〈Φ(g′)|ajai |Φ(g)〉

〈Φ(g′)|Φ(g)〉 , (7.19b)
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κ
gg′∗
ij ≡ 〈Φ(g′)|a†

i a
†
j |Φ(g)〉

〈Φ(g′)|Φ(g)〉 . (7.19c)

One observes that ρg
′g∗
ij = ρgg′ji , κg

′g
ij = −κg′gji and κgg

′∗
ij = −κgg′∗ji , i.e. the two

anomalous densities are antisymmetric whereas the normal density matrix is her-
mitian whenever g = g′.

7.3.3 Pseudo-potential-based Energy Kernel

A particular implementation of the EDF method consists of deriving the EDF kernel
from a pseudo Hamiltonian

Hpseudo ≡
∑
ij

t
1Npseudo
ij a

†
i aj

+
(

1

2!
)2 ∑

ijkl

v̄
2Npseudo
ijkl a

†
i a

†
j alak

+
(

1

3!
)2 ∑

ijklmn

v̄
3Npseudo
ijklmn a

†
i a

†
j a

†
kanamal + · · · , (7.20)

where t1Npseudo embodies an effective one-body kinetic energy operator while
v̄

ANpseudo
ijkl denotes antisymmetrized matrix-elements of a A-body pseudo-potential,

i.e. of a A-body effective interaction. The word “pseudo” refers to the fact that op-
erators entering Eq. (7.20) are not the same as the elementary operators entering
ab-initio theories; e.g. vANpseudo should not be confused with realistic AN interac-
tions. Eventually, Hpseudo is only to be seen as a mere intermediary used to generate
the fundamental ingredient of the theory, i.e. the off-diagonal energy kernel. In such
a context, the latter is computed through

Epseudo
[
g′, g

] ≡ 〈Φ(g′)|Hpseudo|Φ(g)〉
〈Φ(g′)|Φ(g)〉 (7.21a)

=
∑
ij

t1Nij ρ
g′g
ij (7.21b)

+1

2

∑
ijkl

v̄
2Npseudo
ijkl ρ

g′g
ki ρ

g′g
lj

+ 1

6

∑
ijklmn

v̄
3Npseudo
ijklmn ρ

g′g
li ρ

g′g
mj ρ

g′g
nk + · · ·
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+ 1

4

∑
ijkl

v̄
2Npseudo
ijkl κ

gg′∗
ij κ

g′g
kl

+ 1

4

∑
ijklmn

v̄
3Npseudo
ijklmn κ

gg′∗
ij κ

g′g
lm ρ

g′g
nk + · · ·

≡ Epseudo
[
ρg

′g,κg
′g,κgg

′∗], (7.21c)

and is indeed a functional of one-body transition density matrices in virtue of the
generalized (i.e. off-diagonal) Wick theorem [85]. As long as Hpseudo possesses the
same symmetries as the underlying nuclear Hamiltonian, Eq. (7.16) is automatically
fulfilled for any R(α′′) ∈ G .

7.3.4 Skyrme Parametrization

We now introduce a particular family of EDF parametrizations in view of illustrating
some of the points alluded to in the previous section. The Skyrme parametrization8

is a local energy functional, i.e. it is expressed as a single integral in coordinate
space of a local energy density involving a set of local densities derived from the
density matrices introduced in Eqs. (7.19a)–(7.19c).

7.3.4.1 Local Densities

Introducing the creation a†(�rστ) and annihilation a(�rστ) operators in the coordi-
nate representation

a(�rστ)≡
∑
i

ϕi(�rστ) ai, (7.22a)

a†(�rστ)≡
∑
i

ϕ∗i (�rστ) a†
i , (7.22b)

one obtains the transition density matrices in that representation

ρg
′g(�rστ, �r ′σ ′τ ′) ≡ 〈Φ(g′)|a†(�r ′σ ′τ ′)a(�rστ)|Φ(g)〉

〈Φ(g′)|Φ(g)〉 =
∑
ij

ϕ∗j
(�r ′σ ′τ ′)ϕi(�rστ)ρg′gij ,

κg
′g(�rστ, �r ′σ ′τ ′) ≡ 〈Φ(g′)|a(�r ′σ ′τ ′)a(�rστ)|Φ(g)〉

〈Φ(g′)|Φ(g)〉 =
∑
ij

ϕj
(�r ′σ ′τ ′)ϕi(�rστ)κg′gij .

8Coulomb and center-of-mass correction contributions are omitted here for simplicity.
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Further considering spin Pauli matrices9

σx ≡
(

0 1
1 0

)
, σy ≡

(
0 −i
i 0

)
, σz ≡

(
1 0
0 −1

)
, (7.24)

a set of non-local densities containing up to two gradients can be defined

ρg
′g
τ

(�r, �r ′)≡∑
σ

ρg
′g(�rστ, �r ′στ), (7.25a)

sg
′g
τ,ν

(�r, �r ′)≡∑
σ ′σ
ρg

′g(�rστ, �r ′σ ′τ)〈σ ′∣∣σν |σ 〉, (7.25b)

ρ̃g
′g
τ

(�r, �r ′)≡∑
σ

2σ̄ κg
′g(�rστ, �r ′σ̄ τ), (7.25c)

s̃g
′g
τ,ν

(�r, �r ′)≡∑
σ ′σ

2σ̄ ′κg′g
(�rστ, �r ′σ̄ ′τ)〈σ ′∣∣σν |σ 〉, (7.25d)

τg
′g
τ

(�r, �r ′)≡∑
μ

∇�r,μ∇�r ′,μρg
′g
τ

(�r, �r ′), (7.25e)

T g
′g

τ,ν

(�r, �r ′)≡∑
μ

∇�r,μ∇�r ′,μsg
′g
τ,ν

(�r, �r ′), (7.25f)

τ̃ g
′g
τ

(�r, �r ′)≡∑
μ

∇�r,μ∇�r ′,μρ̃g
′g
τ

(�r, �r ′), (7.25g)

T̃ g
′g

τ,ν

(�r, �r ′)≡∑
μ

∇�r,μ∇�r ′,μs̃g
′g
τ,ν

(�r, �r ′), (7.25h)

jg
′g
τ,μ

(�r, �r ′)≡− i

2
(∇�r,μ −∇�r ′,μ)ρg

′g
τ

(�r, �r ′), (7.25i)

J g
′g
τ,μν

(�r, �r ′)≡− i

2
(∇�r,μ −∇�r ′,μ)sg

′g
τ,ν

(�r, �r ′), (7.25j)

j̃ g
′g
τ,μ

(�r, �r ′)≡− i

2
(∇�r,μ −∇�r ′,μ)ρ̃g

′g
τ

(�r, �r ′), (7.25k)

J̃ g
′g
τ,μν

(�r, �r ′)≡− i

2
(∇�r,μ −∇�r ′,μ)s̃g

′g
τ,ν

(�r, �r ′), (7.25l)

where �∇�r denotes the gradient acting on coordinate �r while σ̄ ≡−σ . Greek indexes
refer to cartesian components of a vector (μ) or a tensor (μ,ν). Densities without

Greek index such as ρg
′g
τ , ρ̃g

′g
τ are scalar densities. Equations (7.25a)–(7.25l) pro-

vide non-local matter, spin, pair, pair-spin, kinetic, spin-kinetic, pair-kinetic, pair-

9Proton/neutron mixing is presently ignored such that ρg
′g(�rστ, �r ′σ ′τ ′)= κg′g(�rστ, �r ′σ ′τ ′) = 0

for τ �= τ ′. This does not correspond to the most general situation [86].
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spin-kinetic, current, spin-current, pair-current and pair-spin-current densities for a
given isospin projection, respectively.

Eventually, corresponding local densities are trivially obtained through

ρg
′g
τ (�r)≡ ρg′gτ (�r, �r), sg

′g
τ,μ(�r)≡ sg

′g
τ,μ(�r, �r), (7.26a)

ρ̃g
′g
τ (�r)≡ ρ̃g′gτ (�r, �r), s̃g

′g
τ,μ(�r)≡ s̃g

′g
τ,μ(�r, �r), (7.26b)

τg
′g
τ (�r)≡ τg′gτ (�r, �r), T g

′g
τ,μ (�r)≡ T g

′g
τ,μ (�r, �r), (7.26c)

τ̃ g
′g
τ (�r)≡ τ̃ g′gτ (�r, �r), T̃ g

′g
τ,μ (�r)≡ T̃ g

′g
τ,μ (�r, �r), (7.26d)

jg
′g
τ,μ(�r)≡ jg

′g
τ,μ(�r, �r), J g

′g
τ,μν(�r)≡ J g

′g
τ,μν(�r, �r), (7.26e)

j̃ g
′g
τ,μ(�r)≡ j̃ g

′g
τ,μ(�r, �r), J̃ g

′g
τ,μν(�r)≡ J̃ g

′g
τ,μν(�r, �r). (7.26f)

Considering neutron-neutron and proton-proton pairing only, densities s̃g
′g
τ,ν , T̃

g′g
τ,ν

and j̃ g
′g
τ,μ are null [86]. We finally introduce the spin-orbit current as the pseudo-

vector part of the spin-orbit tensor

J
g′g
τ,λ (�r)≡

∑
μν

ελμνJ
g′g
τ,μν(�r). (7.27)

7.3.4.2 Energy Kernel

The basic parametrization of the Skyrme energy kernel is a bilinear local functional
built out of the above local densities such that each term may contain up to two
gradients and two spin Pauli matrices. It is written as

E
[
ρg

′g,κg
′g,κgg

′∗]≡
∫
d�r{E g′gρ (�r)+ E g

′g
ρρ (�r)+ E g

′g
κκ (�r)

}
, (7.28)

where the term linear in the normal density denotes the effective kinetic energy
while the terms bilinear in the normal and anomalous density matrices model the
effective nuclear interaction energy. Suppressing the spatial argument �r for simplic-
ity, the three contributions to the local energy density read

E g
′g

ρ = �
2

2m

∑
τ

τ g
′g
τ , (7.29a)

E g
′g

ρρ =
∑
ττ ′

[
C
ρρ

ττ ′ρ
g′g
τ ρ

g′g
τ ′ +Cρ�ρ

ττ ′ ρ
g′g
τ �ρ

g′g
τ ′ +Cρτ

ττ ′
(
ρg

′g
τ τ

g′g
τ ′ − �jg′gτ · �jg′g

τ ′
)

+Cssττ ′ �sg
′g
τ · �sg′g

τ ′ +Cs�sττ ′ �sg
′g
τ ·��sg′g

τ ′

+Cρ∇J
ττ ′

(
ρg

′g
τ

�∇ · �J g′g
τ ′ + �jg′gτ · �∇ × �sg′g

τ ′
)
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+CJJ̄ττ ′
(∑
μν

J g
′g
τ,μμJ

g′g
τ ′,νν + J g

′g
τ,μνJ

g′g
τ ′,νμ − 2�sg′gτ · �Fg′g

τ ′

)

+CJJττ ′
(∑
μν

J g
′g
τ,μνJ

g′g
τ ′,μν − �sg′gτ · �T g′g

τ ′

)
+C∇s∇s

ττ ′ �∇ · �sg′gτ �∇ · �sg′g
τ ′

]
,

(7.29b)

E g
′g

κκ =
∑
τ

{
Cρ̃ρ̃ττ ρ̃

gg′∗
τ ρ̃g

′g
τ +Cτ̃ρ̃ττ

(
ρ̃gg

′∗
τ τ̃ g

′g
τ + τ̃ gg′∗τ ρ̃g

′g
τ + 1

2
�∇ρ̃gg′∗τ · �∇ρ̃g′gτ

)

+
∑
μν

(
CJ̃ J̃1
ττ J̃

gg′∗
τ,μν J̃

g′g
τ,μν +CJ̃ J̃2

ττ J̃
gg′∗
τ,νν J̃

g′g
τ,μμ +CJ̃ J̃3

ττ J̃
gg′∗
τ,νμJ̃

g′g
τ,μν

)}
. (7.29c)

A key feature of expressions (7.29b) and (7.29c) relates to the fact that local den-
sities are not combined arbitrarily to build the various bilinear terms at play. Given
R(α′′) ∈ G , one must characterize the transformation law of each local density in-
duced by the transformation of 〈Φ(g′)| and |Φ(g)〉 in order to identify which bilinear
combinations can be formed to fulfil Eq. (7.16). Such a procedure must be typ-
ically conducted for Galilean transformations, rotations in coordinate, gauge and
isospin spaces, as well as for a time-reversal transformation. We refer the reader
to Refs. [86, 87] for a detailed discussion regarding the constraints generated by
Eq. (7.16) on the diagonal energy kernel E[ρgg,κgg,κgg∗]. To give a taste of the
constraints at play, let us however exemplify the situation by briefly discussing four
transformations of interest.

Fulfilling Eq. (7.16) under Galilean transformations leads to the necessity to
group several bilinear terms together, i.e. only the sum of terms grouped in between
parenthesis in Eqs. (7.29a)–(7.29c) are invariant. This per se reduces the number of
free coupling constants entering the EDF kernel. Turning to space rotations, the set
of local densities transform according to

ρΩ
′−Ω ′′Ω−Ω ′′

τ (�r) = ρΩ ′Ω
τ

(
R−1(Ω ′′)�r) (7.30a)

τΩ
′−Ω ′′Ω−Ω ′′

τ (�r) = τΩ ′Ω
τ

(
R−1(Ω ′′)�r) (7.30b)

�sΩ ′−Ω ′′Ω−Ω ′′
τ (�r) = R−1(Ω ′′)�sΩ ′Ω

τ

(
R−1(Ω ′′)�r) (7.30c)

...

where R(Ω) is the 3-dimensional matrix representation of the rotation, i.e. local
densities transform according to their scalar, vector or tensor field character. In or-
der to fulfil Eq. (7.16), densities are combined in Eqs. (7.29a)–(7.29c) such that each
bilinear term eventually transforms as a scalar field. As result, integrating over �r pro-
vides a scalar independent of R−1(Ω ′′). Although the realistic nuclear Hamiltonian
contains a slight breaking of isospin invariance and of isospin symmetry, only the
latter can anyway be characterized in a functional that does not mix protons and neu-

trons. Enforcing it requires that Cff
′

nn = Cff ′pp and Cff
′

np = Cff ′pn . Last but not least,
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fulfilling Eq. (7.16) under a rotation in gauge space does not impose any constraint
on the part of the EDF kernel that depends on the normal density matrix ρg

′g but
imposes that anomalous densities enter under the form of bilinear products of the
form κgg

′∗κg′g , which is indeed the case of each term appearing in Eq. (7.29c).

7.3.4.3 Pseudo-potential-based Kernel

Let us now illustrate the pseudo-potential based approach within the Skyrme fam-
ily of parametrizations. To make the discussion transparent, we simplify it by con-
sidering a toy two-body Skyrme pseudo-potential, i.e. the operators considered in
Eq. (7.20) are

t1Npseudo ≡ − �
2

2m
δ(�r1 − �r2)�, (7.31a)

v2Npseudo/toy ≡ t0(1− Pσ )δ(�r1 − �r2), (7.31b)

where Pσ ≡ (1+σ1 ·σ2)/2 is the two-body spin-exchange operator. Further neglect-
ing isospin for simplicity, the EDF kernel computed through Eqs. (7.21a)–(7.21c)
can be put under the form

E
toy
pseudo

[
ρg

′g,κg
′g,κgg

′∗]≡
∫
d�r

[
�

2

2m
τg

′g(�r)+Aρρρg′g(�r)ρg′g(�r)

+Ass�sg′g(�r) · �sg′g(�r)+Aρ̃ρ̃ ρ̃gg′∗(�r)ρ̃g′g(�r)
]
.

(7.32)

In Eq. (7.32), functional coefficients Aρρ , Ass and Aρ̃ρ̃ are related to the free pa-
rameter t0 entering the pseudo potential through

Aρρ = −Ass = t0
2
, (7.33a)

Aρρ = +Aρ̃ρ̃ = t0
2
, (7.33b)

and are thus interrelated.
If we now come back to the generic Skyrme parametrization (7.29a)–(7.29c), it

is possible to identify the reduced form that formally matches the above pseudo-
potential-based toy functional. It obviously reads

Etoy[ρg′g,κg′g,κgg′∗]≡
∫
d�r

[
�

2

2m
τg

′g(�r)+Cρρρg′g(�r)ρg′g(�r)

+Css�sg′g(�r) · �sg′g(�r)+Cρ̃ρ̃ ρ̃gg′∗(�r)ρ̃g′g(�r)
]
, (7.34)
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and looks indeed formally identical to Eq. (7.32). Still, crucial differences exist be-
tween the two. Contrarily to the pseudo-potential-based approach, parameters Cρρ ,
Css and Cρ̃ρ̃ are not a priori interrelated in the general EDF approach.10 Such a
feature comes from the fact that the functional is postulated rather than computed as
the matrix element of an operator. Interrelations between the functional couplings
entering a pseudo-potential based EDF kernel are a manifestation of Pauli’s prin-
ciple that is automatically enforced by definition (7.21a). On the contrary, Pauli’s
principle is violated in the more general approach to the EDF kernel. Let us now try
to illustrate such a key point more transparently.

The energy kernel can always be expressed under the generic form (7.21a)–
(7.21c), as long as its dependence on transition densities is polynomial, which is
the case of the above toy functionals. For the local Skyrme parametrization, this is
achieved by expanding local densities according to

f g
′g
τ (�r) ≡

∑
ij

W
f
ji(�rτ )ρg

′g
ij , (7.35a)

f̃ g
′g
τ (�rτ ) ≡

∑
ij

W
f̃
ji(�rτ )κg

′g
ij , (7.35b)

whereWf
ji(�rτ ) andWf̃

ji(�rτ ) can be deduced from the definition of the various local
densities at play. In the case of toy bilinear functionals (7.32) and (7.34), one finds

W
ρ
ji(�r) = ϕ†

j (�r)ϕi(�r), (7.36a)

�W �s
j i(�r) = ϕ†

j (�r)�σϕi(�r), (7.36b)

W
ρ̃
ji(�r) =

∑
σ

σϕj (�rσ )ϕi(�rσ̄ ), (7.36c)

where ϕi(�r) [ϕ†
i (�r)] denotes a spinor with components ϕi(�rσ ) [ϕ∗i (�rσ )]. With

such definitions at hand, the effective two-body matrix elements v̄2N toy
ijkl entering

Eq. (7.21b) can be extracted in two different ways, i.e. either focusing on the term

proportional to ρg
′g
ki ρ

g′g
lj or focusing on the term proportional to κgg

′∗
ij κ

g′g
kl , i.e.

v̄
2N toyρρ
ijkl ≡ 2

∫
d�r[BρρWρ

ik(�r)Wρ
jl(�r)+Bss �W �s

ik(�r) · �W �s
j l(�r)

]

= 2
∫
d�r

∑
σσ ′
ϕ∗i (�rσ )ϕ∗j

(�rσ ′)[Bρρϕk(�rσ )ϕl(�rσ ′)

+Bss(ϕk(�rσ̄ )ϕl(�rσ̄ ′)− σ̄ σ̄ ′ϕk(�rσ̄ )ϕl(�rσ̄ ′)
+ σσ ′ϕk(�rσ )ϕl

(�rσ ′))], (7.37a)

10In the case of the present toy functional, the fulfilment of Eq. (7.16) under Galilean transforma-
tions does not correlate any of the couplings.
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v̄
2N toyκκ
ijkl ≡ 4

∫
d�rBρ̃ρ̃W ρ̃∗

ij (�r)W ρ̃
kl(�r)

= 4
∫
d�rBρ̃ρ̃

∑
σσ ′
σ̄ σ̄ ′ϕ∗i (�rσ )ϕ∗j (�rσ̄ )ϕk

(�rσ ′)ϕl(�rσ̄ ′), (7.37b)

with Bff
′ ≡Aff ′ for Eq. (7.32) and Bff

′ ≡ Cff ′ for Eq. (7.34). Such an extraction
of effective two-body matrix elements11 is instrumental to pin down the potential
violation of Pauli’s principle in the EDF kernel.

7.3.4.4 Spurious Self-interaction and Self-pairing Contributions

In the nuclear EDF framework, Pauli’s principle is always satisfied at the level of
the individual densities given that one-body density matrices are computed from
antisymmetric many-body states (Eqs. (7.19a)–(7.19c)). The violation we now wish
to briefly discuss may arise when multiplying several such densities together to build
the interaction part of the energy kernel.

The first issue relates to the behaviour of v̄2Nρρ
ijkl in the particular case where k = l

(or i = j ). Pauli’s principle requires such effective matrix elements to be zero given
that two nucleons occupy the same single-particle state. It is easy to check that
v̄

2toyρρ
ijkk = 0 in Eq. (7.37a) if, and only if, Bρρ =−Bss , i.e. if the pseudo-potential-

based relationship (7.33a) is satisfied. In the general EDF framework, such interre-
lations between functional parameters are not enforced and Pauli’s principle is vio-
lated,12 e.g. v̄2Nρρ

ijkk �= 0. Such a violation eventually leads to a contamination of the
EDF kernel by spurious self-interaction contributions, i.e. part of the interaction en-
ergy originates from individual nucleons interacting with themselves [88, 89]. The
self-interaction problem has been extensively studied within DFT for electronic sys-
tems and has been shown to contaminate significantly many observables, e.g. ion-
ization energies and, thus, the asymptotic of the electronic density distribution [90].

The self-interaction issue does not concern v̄2Nκκ
ijkl . Indeed, such a matrix element

is multiplied by κgg
′∗

ij and κg
′g
kl whose antisymmetry ensures that the corresponding

contribution to the energy kernel is anyway zero for i = j and/or k = l. However,
a second issue relates to the link between v̄2Nρρ

ijkl and v̄2Nκκ
ijkl . Equations (7.21a)–

(7.21c) suggests that those two sets of matrix elements should be identical. As a
matter of fact, it is straightforward to check that v̄2N toyρρ

ijkl = v̄2N toyκκ
ijkl if, and only if,

Bρρ =−Bss = Bρ̃ρ̃ , i.e. if pseudo-potential-based relationships (7.33a) and (7.33b)

11The present analysis can be easily extended to trilinear functional terms and effective three-body
matrix elements.
12This encompasses the intermediate case where the EDF kernel is computed as the matrix el-
ements of a density-dependent effective “Hamiltonian”. Indeed, in such a case no exchange or
pairing term corresponding to the density dependence of the effective vertex appears in the EDF
kernel.
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are satisfied. In the general EDF framework, such interrelations between functional
parameters are not a priori enforced and Pauli’s principle is violated, e.g. v̄2Nρρ �=
v̄2Nκκ . Such a violation eventually leads to a contamination of the EDF kernel by
spurious self-pairing contributions. The notion of self-pairing was introduced for the
first time in Refs. [54, 55] and generalizes the well-known notion of self-interaction.

Within the nuclear context, the contamination of SR results by self-interaction
and self-pairing processes has never been characterized. It thus deserves attention in
the future. In Sect. 7.5.8, we will however see that such spurious contributions to the
energy kernel have already been understood to be responsible for critical pathologies
in MR-EDF calculations.

7.3.4.5 Modern Parametrizations

On the one hand, the bilinear form of the Skyrme parametrization given in
Eqs. (7.29a)–(7.29c) constitutes the basis of any modern Skyrme parametrization.
On the other hand, none of the modern Skyrme parametrizations strictly corresponds
to such a form [48, 54, 55]. The most common departures from it relate to the fact
that [48]

1. Couplings Cff
′

ττ ′ may further depend on a set of local densities in order to en-
rich the parametrization and provide more flexibility. Of course, such additional
density dependences must not jeopardize Eq. (7.16). Common parametriza-
tions are such that Cρρ

ττ ′ , C
ss
ττ ′ and Cρ̃ρ̃ττ depend on the isoscalar matter density

ρ
g′g
0 (�r)≡ ρg′gn (�r)+ ρg′gp (�r).

2. Specific couplings might be put to zero for (numerical) convenience, simplic-
ity or because of the difficulty to identify empirical data that can help fix their
value unambiguously. Typical examples concern CJJ

ττ ′ , C
JJ̄
ττ ′ , C

∇s∇s
ττ ′ , Cτ̃ρ̃ττ and

C
J̃ J̃1/2/3
ττ .

3. The form of certain terms might be approximated. This is the case of the so-
called exchange term originating from the Coulomb interaction (not shown here)
that is usually treated in the Slater approximation.

In the very large majority of cases, such deviations from the strict and complete
bilinear form constitute a departure from the pseudo-potential based method, inde-
pendent of whether or not the bilinear baseline was originally derived from a pseudo
potential. Consequently, ad hoc modifications of the EDF parametrizations cause or
reinforce a breaking of Pauli’s principle and induce pathologies associated with it
(see Sects. 7.3.4.4 and 7.5.8). Note that the latter statements apply equally to Gogny
or relativistic parametrization of the EDF kernel. Still, most of the enrichments of
the analytical form of the Skyrme family of parametrizations have been performed
along this line in recent years. With no ambition of being exhaustive, let us mention
some of the recent attempts at empirically enriching the Skyrme parametrization in
order to improve its global performance and/or overcome a specific limitation. Such
developments relate to
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1. A dependence of Cρ̃ρ̃ττ on the scalar-isovector density to better reproduce pairing
gaps in neutron-rich nuclei and asymmetric nuclear matter [64, 91–94].

2. A dependence of Cρρ
ττ ′ and Css

ττ ′ on vector-isoscalar and vector-isovector densi-
ties to control infinite wavelength spin and isospin instabilities of nuclear matter
beyond saturation density [95].

3. An enriched dependence of Cρρ
ττ ′ on the scalar-isoscalar density to fully decouple

the isoscalar effective mass from the compressibility [96, 97].
4. The pairing part of the EDF derived from a regularized zero-range two-body

pseudo potential with separable Gaussian regulators [91, 98, 99] with the goal
to have (i) a way to handle a finite-range pairing vertex that is numerically cost
efficient and (ii) the possibility to connect to realistic nuclear forces.

5. A density dependence of Cρ�ρ
ττ ′ to produce a surface-peaked effective mass [100,

101].
6. The use of Cρ∇Jnn �= Cρ∇Jpp to offer more flexibility in the reproduction of spin-

orbit splittings [102].

Even more recently, an effort towards the construction of new families of EDF
parametrizations that derive strictly from a pseudo potential has emerged. This new
trend is motivated by the identification of pathologies in MR-EDF calculations
that originate from the breaking of Pauli’s principle in any of the existing EDF
parametrizations (see Sects. 7.3.4.4 and 7.5.8). Associated on-going developments
relate to the construction of

1. A bilinear EDF derived from a zero-range Skyrme-like two-body pseudo poten-
tial containing up to six gradient operators [66, 103].

2. The complete bilinear and trilinear EDF derived from zero-range Skyrme-like
two- and three-body pseudo potentials containing up to two gradient opera-
tors [75, 104].

3. A bilinear EDF derived from a regularized zero-range Skyrme-like two-body
pseudo potential with up to two gradient operators and Gaussian regulators [105,
106].

7.4 Single-Reference Implementation

The single-reference implementation of the nuclear EDF method exclusively in-
vokes the diagonal kernel E[g,g]. State |Φ(g)〉 is entitled to break as many sym-
metries of the nuclear Hamiltonian as it finds energetically favourable. That a cer-
tain symmetry does break spontaneously usually depends on the number of ele-
mentary constituents of the system under consideration (see Sect. 7.4.5). As state
|Φ(g)〉 acquires a finite order parameter g, the diagonal kernel remains indepen-
dent of its phase α, as schematically pictured in Fig. 7.2. Such a degeneracy derives
trivially from Eq. (7.16). Whenever the system does break the symmetry sponta-
neously, i.e. whenever the minimal energy is obtained for a non zero value of g,
the two-dimensional profile of E[g,g] takes the typical form of a “mexican hat”.
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Fig. 7.2 Schematic view of
the diagonal energy kernel
E[g,g] as a function of both
the phase and the magnitude
of the order parameter
associated with a
spontaneously broken
symmetry

The degeneracy of E[g,g] with respect to α relates to the fact that a spontaneous
symmetry breaking at the SR level gives rise to a zero-energy Goldstone mode. One
practical consequence is that SR calculations can be performed at any fixed value of
α, e.g. α = 0.

7.4.1 Equation of Motion

The SR energy is obtained, for a targeted value of |g|, through the minimization

ESR|g| ≡ Min
{|Φ(|g|0)〉}

{E|g|}, (7.38)

within the manifold of (symmetry-breaking) Bogoliubov states. The diagonal en-
ergy kernel to be actually minimized reads13

E|g| ≡E[g,g] − λ
[
N − 〈

Φ(g)
∣∣N ∣∣Φ(g)〉]− λ|g|[|g| − ∣∣〈Φ(g)∣∣G∣∣Φ(g)〉∣∣]. (7.39)

The last two terms in Eq. (7.39) introduce Lagrange parameters14 that are to be
adjusted such that the average number of nucleons in |Φ(|g|0)〉 is equal to its actual
number in the nucleus under study and such that the norm of the order parameter is
equal to the desired value |g|.

Equations (7.38)–(7.39) lead to solving an equation of motion that takes the form
of a constrained Bogoliubov-De Gennes eigenvalue problem15

(
h− λ1 	

−	∗ −h∗ + λ1

)(g)(U
V

)(g)
μ

=E|g|
μ

(
U
V

)(g)
μ

, (7.40)

13One way to ensure that the minimization is indeed performed within the manyfold of product
states consists of adding an additional Lagrange constraint requiring that the generalized density
matrix [51] R remains idempotent.
14Expressions are given here for linear constraints although practical calculations often rely on
quadratic constraints [107].
15Depending on the isospin projection τ considered, λ= λn or λp .
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Fig. 7.3 Energy landscapes as a function of the norm of various order parameters [108]. Note
that |q| stands for |g| in the figure. Upper panels: SR-EDF energy of 240Pu and 202Rn as a func-
tion of axial quadrupole deformation (|g| ≡ ρ20). Lower left panel: SR-EDF energy of 208Pb as a
function of axial octupole deformation (|g| ≡ ρ30). Lower right panel: SR-EDF energy of 120Sn
as a function of pairing deformation (|g| ≡ ‖κ‖). Left vertical axes are rescaled with respect to the
symmetry conserving, i.e. non-deformed, reference point

which is to be realized iteratively and where the (constrained) one-body fields are
defined through functional derivatives of the (modified) diagonal energy kernel

h(g) − λ1 ≡ δE|g|
δρgg∗

; 	(g) ≡ δE|g|
δκgg∗

. (7.41)

The field h(g) governs the effective single-particle motion while the anomalous field
	(g) drives pairing correlations. Explicit expressions of the fields are easily obtained
given a specific (e.g. Skyrme) parametrization of the EDF kernel. Equation (7.40)
provides the set of quasi-particle energies E|g|

μ at “deformation” g and the corre-

sponding wave-functions (U,V)(g)μ from which density matrices ρgg = V(g)∗V(g)T

and κgg = V(g)∗U(g)T , as well as the total energy, can be computed.
The full SR energy landscape, associated with the complete set of reference states

{|Φ |g|α〉 = R(α)|Φ(|g|0)〉; |g| ∈ [0,+∞[;α ∈ DG }, is generated through repeated
calculations performed for various targeted values of |g|. The degeneracy of E[g,g]
with respect to α makes it unnecessary to solve the equation of motion for α �= 0.
As an illustration, Fig. 7.3 displays the energy landscapes associated with various
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order parameters, i.e. various operators G. First, the energy landscape of 240Pu and
202Rn as a function of axial quadrupole deformation (|g| ≡ ρ20) demonstrates that
rotational symmetry is spontaneously broken in those nuclei. Second, the energy
landscape of 208Pb as a function of axial octupole deformation (|g| ≡ ρ30) illustrates
that this nucleus is found to remain spherical at the SR-EDF level. Last but not
least, the energy landscape of 120Sn as a function of pairing deformation (|g| ≡ ‖κ‖)
shows that such a nucleus is superfluid.

The absolute minimum of the SR landscape ESRGS ≡ Min|g|{ESR|g| } provides a first
approximation to the ground-state binding energy that incorporates static collective
correlations via the breaking of symmetries. Such a solution provides a first approx-
imation to other quantities of interest, e.g. ground-state’s charge and matter radii
as well as nucleonic density distributions, one-nucleon separation energies and ef-
fective single-particle energies (see Sect. 7.4.3), along with individual excitations
through an even number of quasi-particle excitations. Using one projection of the
angular-momentum vector, e.g. Jx , as the constrain operator gives access to rota-
tional excitations of the nucleus when solving Eq. (7.40) for appropriate values of
〈Φ(g)|Jx |Φ(g)〉. This actually corresponds to using the velocity along the phase of
the order parameter as a collective degree of freedom.

The full SR landscape provides a richer information. Along the radial direction
|g|, in particular, the curvature around the minimum characterizes the sensitivity
of the system to a change of collective “deformation”, whereas the existence of
a secondary minimum can be tentatively associated with a shape isomer. Such an
analysis is the starting point of the more advanced MR implementation detailed in
Sect. 7.5 below.

7.4.2 One-Nucleon Addition and Removal Processes

In the context of SR-EDF calculations, the description of states in theN±1 systems
rely on Bogoliubov states having the form of one quasi-particle excitations on top
of an even number-parity vacuum

∣∣Φ(g)k 〉≡ β(g)†k

∣∣Φ(g)〉. (7.42)

The even-number parity vacuum being associated with an even-even system, one-
nucleon addition and removal energies to final states of the A± 1 systems are ob-
tained through

E
|g|±
k =±{

E
[
ρ
gg
k ,κ

gg
k ,κ

gg∗
k

]−E[ρgg,κgg,κgg∗]}
∓ λ{〈Φ(g)k ∣∣N ∣∣Φ(g)k 〉− (N ± 1)

}
= λ±E|g|

k , (7.43)

where ρ
gg
k and κ

gg
k denote the density matrices computed from |Φ(g)k 〉 [51]. The

error associated with the difference between the average number of particles in state
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|Φ(g)k 〉 and the targeted particle number N ± 1 is compensated for by the last term

in the definition of E|g|±
k . In the perturbative approach (Eq. (7.43)), the chemical

potential λ and quasi-particle energies E|g|
k are outputs of Eq. (7.40) solved for the

even number-parity vacuum.
Spectroscopic amplitudes associated with the (perturbative) addition and removal

of a nucleon are obtained as

〈
Φ
(g)
k

∣∣a†
p

∣∣Φ(g)〉 = U(g)∗pk , (7.44a)

〈
Φ
(g)
k

∣∣ap∣∣Φ(g)〉 = V (g)∗pk . (7.44b)

From these amplitudes, spectroscopic probability matrices are introduced through
S(g)+k ≡ U(g)k U(g)†k and S(g)−k ≡ V(g)∗k V(g)Tk and satisfy, according to Eq. (7.5a), the
sum rule

∑
k

S(g)+k +
∑
k

S(g)−k = 1. (7.45)

Corresponding spectroscopic factors are nothing but the norm of spectroscopic
probability matrices and are thus given [57] by

SF
(g)±
k ≡ TrH1

[
S(g)±k

]
. (7.46)

Any inclusion of many-body correlations leads to a fragmentation of the spec-
troscopic strength associated with one-nucleon addition and removal processes.16

Within the SR-EDF method, this is the case of static collective correlations that are
incorporated via the breaking of symmetries. For example, pairing correlations frag-
ment the strength near the Fermi energy into two peaks belonging, respectively, to
addition and removal channels. Similarly, the lifting of the 2j+1 degeneracy seen at
sphericity in the additional/removal spectrumE|g|±

k is nothing but the fragmentation
of the strength induced by the correlations grasped via the breaking of rotational in-
variance. Still, this happens at the price of losing good symmetry quantum numbers,
which makes difficult to interpret the additional/removal spectrum E|g|±

k . One must
thus await for the MR-EDF description to restore symmetries and achieve a mean-
ingful comparison with experimental data. This will bring further correlations to the
description and additional fragmentation of the strength. The latter reveals that sep-
aration energies E|g|±

k do not target experimental values yet; i.e. absolute values of

16It is specific to the EDF method to implicitly account for correlations via the functional character

of E[g,g]. As such, one-nucleon separation energies E|g|±
k obtained through SR-EDF calculations

can be seen as effective centroids of a more fragmented underlying spectrum generated via a theory
that explicitly accounts for those correlations.
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experimental one-nucleon addition (removal) energies are typically underestimated
(overestimated) on purpose by SR-EDF calculations17 in magic nuclei [48].

7.4.3 Effective Single-Particle Energies

In an ab-initio context, meaningful effective single-particle energies (ESPEs) pro-
viding the underlying shell structure relate to the Baranger centroid Hamilto-
nian. The latter is computed from outputs of the A-body Schroedinger equation
through [109, 110]

hcent ≡
∑

μ∈HA+1

S+μE+
μ +

∑
ν∈HA−1

S−ν E−
ν , (7.47)

where HA±1 denotes the A± 1 Hilbert space. Specifically, ESPEs are the eigenval-
ues {ecent

p } of the centroid field [109]

hcentψcent
p = ecent

p ψcent
p , (7.48)

and are nothing but barycentre of one-nucleon separation energies weighted by the
probability to reach the corresponding A+ 1 (A− 1) eigenstates through the addi-
tion (removal) a nucleon to (from) single-particle state ψcent

p . As such, they recollect
the strength fragmented by many-body correlations.

Let us now transpose the discussion to the context of SR-EDF calculations. Fol-
lowing Baranger, the objective is to build meaningful centroids of the fragmented
strength. As discussed above, the only fragmentation of the strength explicitly ac-
counted for within the SR-EDF method relates to the breaking of symmetries. Let
us illustrate the situation by taking the breaking of particle number and angular mo-
mentum as examples. Below, the breaking of the former is explicitly embodied by
the Bogoliubov algebra whereas the breaking of the latter is materialized by the
labels |g| ≡ ρλμ and Arg(g)≡Ω .

As far as gathering the strength fragmented by pairing correlations, one can
indeed reach an interesting result [111]. Multiplying the first (second) line of
Eq. (7.40) by U(g)†k (V(g)†k ) and summing over k, one obtains

∑
k

h(g)U(g)k U(g)†k +
∑
k

	(g)V(g)k U(g)†k =
∑
k

(
λ+E|g|

k

)
U(g)k U(g)†k , (7.49a)

∑
k

	(g)U(g)∗k V(g)Tk +
∑
k

h(g)V(g)∗k V(g)Tk =
∑
k

(
λ−E|g|

k

)
V(g)∗k V(g)Tk . (7.49b)

17Inaccuracies associated with the quality of empirical EDF parametrizations are responsible for
quantitative discrepancies while the present discussion relates to qualitative differences that are
built in on purpose.
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Adding up both lines, using Eqs. (7.5a) and (7.5b) eventually provides

h(g) =
∑
k

S(g)+k E
|g|+
k +

∑
k

S(g)−k E
|g|−
k , (7.50)

which is analogous to Eq. (7.47) and provides h(g) with the meaning of a centroid
field. The coupling of addition and removal spectroscopic amplitudes via the anoma-
lous field 	(g) in Eq. (7.40) is screened out from the Baranger sum rule. This is an
a priori non-trivial result, though straightforward to obtain. Of course, the explicit
tackling of pairing correlations does impact the centroid field indirectly via the feed-
back of such correlations on the normal density matrix and the dependence of h(g)

on the latter. Interestingly, Eq. (7.50) justifies the traditional use by practitioners of
the eigenvalues of h(g) as effective single-particle energies,18 i.e.

h(g)ψ(g)p = e|g|p ψ(g)p . (7.51)

It is remarkable that Eq. (7.50) could be obtained without making any explicit ref-
erence to a Hamilton operator, i.e. within the strict spirit of the EDF method. This
is at variance with the standard proof that allows one to connect the centroid field
with the static part of the one-nucleon self energy [109, 110].

Sum rule (7.50) only gathers the strength fragmented by correlations associated
with the breaking of particle number, not yet the strength fragmented by the breaking
of angular momentum. As a matter of fact, h(g) does break rotational symmetry such
that the ESPE spectrum e

|g|
p displays the same lifting of the 2j + 1 degeneracy as

E
|g|±
k . Plotted against |g| = ρ20, the spectrum e|g|p takes the form of a so-called Nils-

son diagram as is illustrated in Fig. 7.4 for 250Fm. One observes that the minimum
of the energy landscape is obtained for a deformation that reflects a compromise
between N = 150 and Z ∼ 100 deformed shell gaps in the ESPE spectrum.

One can now go one step further and recollect the strength associated with the
breaking of rotational symmetry.19 To do so, one notices that h(g), as any one-body
operator, transforms under rotation according to20

h(ρλμΩ) = R(Ω)h(ρλμ0)R†(Ω). (7.52)

The fragmented strength is recollected by extracting the monopole, i.e. angular-
averaged, part of h(ρλμΩ). Expressing Eq. (7.52) in a spherical basis, omitting

18In view of Eq. (7.50), it thus appears more justified to use eigenvalues of h(g) as ESPEs rather
than its diagonal matrix elements in the basis diagonalizing ρgg , i.e. the so-called canonical basis,
as it is often done by practitioners, e.g. see Ref. [57].
19Such a procedure can be extended to any subgroup of G .
20Equation (7.52) can be recovered by expressing matrices S(g)±k in a spherical basis p = nπjmτ
and by working out how such matrices transform under the rotation of |Φ(g)〉 and |Φ(g)k 〉.
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Fig. 7.4 Energy landscape
and effective single-particle
energies of 250Fm as a
function of axial quadrupole
deformation
(|g| = ρ20 = β2) [108]

isospin projection and parity21 quantum numbers for simplicity, as well as using
orthogonality relationship (7.9), the monopole operator satisfies [112]

h
mon[ρλμ]
njmn′j ′m′ ≡ 2J + 1

16π2

∫
DΩ

dΩD0∗
00 (Ω)h

(ρλμΩ)

njmn′j ′m′ (7.53a)

= δjj ′δmm′
∑
m′′
h
(ρλμ0)
njm′′n′jm′′ . (7.53b)

Equation (7.53b) demonstrates that hmon[ρλμ] displays spherical symmetry and is
built out of the (j,m) blocks of the deformed operator h(ρλμ0), including an averag-

21If h(ρλμ0) breaks parity, one further needs to extract the component belonging to the trivial Irreps
of Ci , i.e. the inversion center group. Indeed, restoring spherical symmetry does not ensure that
parity is a good quantum number, e.g. a j = 3/2 single-particle state can be a linear combination
of d3/2 and p3/2 states. Proceeding to such an extraction would deliver a one-body field that is
block-diagonal with respect to parity π as well.
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ing over the magnetic quantum numberm. The monopole field thus extracted carries
the deformation label ρλμ as a memory of the symmetry breaking field it has been
extracted from. Spherical ESPEs gathering the strength of the fragmented spectrum
e
|g|
p are then obtained through

hmon[ρλμ]ψmon[ρλμ]
njm = emon[ρλμ]

njm ψ
mon[ρλμ]
njm . (7.54)

Equation (7.54) defines the way to extract a spherical effective single-particle energy
spectrum out of any SR-EDF calculation. Such a procedure has neither been defined
nor used so far.22 As already mentioned, the above procedure is not limited to SO(3)
and can be extended to any broken symmetry.

7.4.4 Equation of State of Infinite Nuclear Matter

Infinite nuclear matter (INM) is an idealized nuclear system that has relevance to the
study of several real systems, e.g. the physics of neutron stars or the dynamic of su-
pernovae explosions. The system is made of protons and neutrons and is considered
to be homogeneous. The Coulomb interaction between protons is switched off. One
is first and foremost interested in computing the equation of state (EOS) of such a
system, i.e. its energy per nucleon as a function of its density. This can easily be done
at the SR level. Below, we illustrate the procedure at zero temperature on the basis of
the strict bilinear Skyrme parametrization introduced in Eqs. (7.29a)–(7.29c). Fur-
thermore, pairing correlations are omitted as they little impact bulk properties such
as the EOS. However, one should note that pairing properties, e.g. pairing gaps, of
INM are of importance to the physics of neutron stars [113].

7.4.4.1 Definitions

The four basic degrees of freedom characterizing INM are the scalar-isoscalar ρ0,
scalar-isovector ρ1, vector-isoscalar s0 and vector-isovector s1 densities. They can
be expressed through neutron and proton as well as spin-up and spin-down densities
in the following way

ρ0 = ρn↑ + ρn↓ + ρp↑ + ρp↓, (7.55a)

ρ1 = ρn↑ + ρn↓ − ρp↑ − ρp↓, (7.55b)

s0 = ρn↑ − ρn↓ + ρp↑ − ρp↓, (7.55c)

s1 = ρn↑ − ρn↓ − ρp↑ + ρp↓, (7.55d)

22Practically speaking, Eqs. (7.53a), (7.53b), (7.54) are particularly trivial to implement in numer-
ical codes that expend deformed solutions out of a spherical, e.g. harmonic oscillator, basis.
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such that the inverse relationships read

ρn↑ = 1

4
(1+ Iτ + Iσ + Iστ )ρ0, (7.56a)

ρn↓ = 1

4
(1+ Iτ − Iσ − Iστ )ρ0, (7.56b)

ρp↑ = 1

4
(1− Iτ + Iσ − Iστ )ρ0, (7.56c)

ρp↓ = 1

4
(1− Iτ − Iσ + Iστ )ρ0, (7.56d)

where isospin Iτ ≡ ρ1/ρ0, spin Iσ ≡ s0/ρ0 and spin-isospin Iστ ≡ s1/ρ0 excesses
(−1 ≤ Ii ≤ 1) have been introduced. The typical cases of interest are (i) sym-
metric nuclear matter (Iτ = Iσ = Iστ = 0), (ii) isospin-asymmetric nuclear matter
(Iτ �= 0), (iii) spin-polarized nuclear matter (Iσ �= 0) and (iv) isospin-asymmetric
spin-polarized nuclear matter (Iτ �= 0, Iσ �= 0 and Iστ �= 0).

Infinite nuclear matter being translationally invariant, it is convenient to use a
plane wave basis

〈�rστ ∣∣�kσ ′τ ′〉= ϕ�kσ ′τ ′(�rστ)= (2π)− 3
2 exp(i�k · �r)δσσ ′δττ ′ , (7.57)

where τσ = {n ↑, n ↓,p ↑,p ↓}. Neglecting pairing, the SR state reduces to a Slater
determinant obtained by filling individual orbitals ϕ�kσ ′τ ′(�rστ) up to the Fermi mo-
mentum, i.e. the normal density matrix is diagonal in the plane-wave basis and equal
to 1 for states characterized by |�k| ≤ kF,τσ and 0 otherwise, where kF,τσ denotes
the spin- and isospin-dependent Fermi momentum. The SR state does not carry any
non-zero order parameter such that the label g can be dropped in the present section.

Starting from Eq. (7.57), local densities can be computed explicitly. The sum
over basis states in Eqs. (7.22a), (7.22b) becomes an integral over the sphere of
radius kF,τσ . Eventually, local densities of interest are constant in space and read as

ρτσ =
∫
|�k|≤kF,τσ

d�kϕ∗�k (�rστ)ϕ�k(�rστ)=
1

6π2
k3
F,τσ , (7.58a)

ττσ =
∫
|�k|≤kF,τσ

d�k[ �∇ϕ∗�k (�rστ)
] · [ �∇ϕ�k(�rστ)]= 3

20

2

3π2
k5
F,τσ . (7.58b)

With the choice of a Fermi surface centred at �k = 0, current densities vanish �jqσ = 0.
Also, all gradients of local densities are zero ∇νρqσ = 0 by construction, as are the
pair densities. Using Eqs. (7.56a)–(7.56d), (7.58a) and (7.58b), one relates spin-
isospin kinetic densities to spin, isospin and spin-isospin excesses

τ0 = τn↑ + τn↓ + τp↑ + τp↓ = 3

5
csρ

5/3
0 F

(0)
5/3(Iτ , Iσ , Iστ ), (7.59a)

τ1 = τn↑ + τn↓ − τp↑ − τp↓ = 3

5
csρ

5/3
0 F

(τ)
5/3(Iτ , Iσ , Iστ ), (7.59b)
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T0 = τn↑ − τn↓ + τp↑ − τp↓ = 3

5
csρ

5/3
0 F

(σ)
5/3 (Iτ , Iσ , Iστ ), (7.59c)

T1 = τn↑ − τn↓ − τp↑ + τp↓ = 3

5
csρ

5/3
0 F

(στ)
5/3 (Iτ , Iσ , Iστ ), (7.59d)

where F -functions [114] are explicated in the Appendix. We further introduce cs ≡
(3π2/2)2/3 and cn ≡ (3π2)2/3.

Last but not least, the results are expressed below in terms of isoscalar Cff
′

0

and isovector Cff
′

1 couplings. The latter are related to the couplings in the neu-
tron/proton representation (under the assumption of isospin symmetry) used in
Eqs. (7.29a)–(7.29c) through

C
ff ′
0 = 1

2

(
Cff

′
ττ +Cff ′τ τ̄

)
, (7.60a)

C
ff ′
1 = 1

2

(
Cff

′
ττ −Cff ′τ τ̄

)
. (7.60b)

The fact that most of the local densities are zero in INM implies that properties will
be expressed in terms of a limited number of couplings.

7.4.4.2 Symmetric Nuclear Matter

Symmetric nuclear matter (SNM) is characterized by an equal number of pro-
tons and neutrons as well as of spin up and spin down nucleons. Consequently,
ρ1 = Iτ = 0 and Iσ = Iστ = 0. Only two local densities ρ0 and τ0 subsist, i.e.
ρn = ρp = 1

2ρ0 and τn = τp = 1
2τ0, with

ρ0 = 2

3π2
k3
F ; τ0 = 3

5
csρ

5/3
0 . (7.61)

The EOS is obtained from Eqs. (7.29a)–(7.29c) as

E

A
≡ Eρ + Eρρ

ρ0
= 3

5

�
2

2m
csρ

2/3
0 +Cρρ0 ρ2

0 +
3

5
csC

ρτ
0 ρ

5/3
0 . (7.62)

Symmetric nuclear matter presents a stable state such that a minimum energy is ob-
tained for a finite density ρsat. The pressure of the fluid relates to the first derivative
of the EOS with respect to the isoscalar density, which in SNM reads

P ≡ ρ2
0
∂E/A

∂ρ0

∣∣∣∣
A

= 2

5

�
2

2m
csρ

5/3
0 +Cρρ0 ρ

2
0 + csCρτ0 ρ

8/3
0 . (7.63)

The equilibrium density ρsat is obtained as the solution of P(ρsat)= 0.
The incompressibility of the nuclear fluid relates to the second derivative of the

EOS with respect to the isoscalar density and expresses the energy cost to compress
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the nuclear fluid. It is defined as

K ≡18P

ρ0
+ 9ρ2

0
∂2E/A

∂ρ2
0

, (7.64)

such that at equilibrium

K∞ ≡ 9ρ2
0
∂2E/A

∂ρ2
0

∣∣∣∣
ρ0=ρsat

=−6

5

�
2

2m
csρ

2/3
sat + 6csC

ρτ
0 ρ

5/3
sat , (7.65)

which needs to be positive for the system to be stable against density fluctuations.

7.4.4.3 Asymmetric Nuclear Matter

In general, INM is characterized by (i) unequal proton and neutron matter densities,
i.e. Iτ �= 0, (ii) a global spin polarization, i.e. Iσ �= 0 and (iii) a spin polarization that
differs for neutron and proton species, i.e. Iστ �= 0. The EOS of such a nuclear fluid
is given by

E

A
= 3

5

�
2

2m
csF

(0)
5/3(Iτ , Iσ , Iστ )ρ

2/3
0 +Cρρ0 ρ0 +Cρρ1 ρ0I

2
τ +Css0 ρ0I

2
σ +Css1 ρ0I

2
στ

+ 3

5

[
C
ρτ
0 F

(0)
5/3(Iτ , Iσ , Iστ )+Cρτ1 IτF

(τ)
5/3(Iτ , Iσ , Iστ )

−CJJ0 IσF
(σ)
5/3 (Iτ , Iσ , Iστ )−CJJ1 IστF

(στ)
5/3 (Iτ , Iσ , Iστ )

]
csρ

5/3
0 .

Spin, isospin and spin-isospin symmetry energies are analogues ofK∞ with respect
to spin, isospin and spin-isospin excesses, respectively. As such, they characterize
the stiffness of the EOS with respect to generating such non-zero excesses. At sat-
uration of SNM, i.e. when Iσ = Iτ = Iστ = 0 and ρ0 = ρsat, the three symmetry
energies are given by

aτ ≡ 1

2

∂2EH/A

∂I 2
τ

∣∣∣∣
Iσ=Iτ=Iστ=0

= 1

3

�
2

2m
csρ

2/3
0 +Cρρ1 ρ0 +

[
1

3
C
ρτ
0 +Cρτ1

]
csρ

5/3
0 , (7.66a)

aσ ≡ 1

2

∂2EH/A

∂I 2
σ

∣∣∣∣
Iσ=Iτ=Iστ=0

= 1

3

�
2

2m
csρ

2/3
0 +Css0 ρ0 +

[
1

3
C
ρτ
0 −CJJ0

]
csρ

5/3
0 , (7.66b)
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aστ ≡ 1

2

∂2EH/A

∂I 2
στ

∣∣∣∣
Iσ=Iτ=Iστ=0

= 1

3

�
2

2m
csρ

2/3
0 +Css1 ρ0 +

[
1

3
C
ρτ
0 −CJJ1

]
csρ

5/3
0 , (7.66c)

and must be positive for the minimum of the EOS to be stable.
Two quantities of interest are intimately connected to the skin thickness of heavy

isospin-asymmetric nuclei, i.e. to the difference between their neutron and proton
radii. These quantities are the density-symmetry coefficient L

L ≡ 3ρ
∂

∂ρ

(
1

2

∂2E/A

∂I 2
τ

)∣∣∣∣
Iσ=Iτ=Iστ=0

= 2

3

�
2

2m
csρ

2/3
0 + 3Cρρ1 ρ0 +

[
5

3
C
ρτ
0 + 5Cρτ1

]
csρ

5/3
0 , (7.67)

and the symmetry compressibility

Ksym ≡ 9ρ2 ∂
2

∂ρ2

(
1

2

∂2E/A

∂I 2
τ

)∣∣∣∣
Iσ=Iτ=Iστ=0

= −2

3
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2m
csρ

2/3
0 + 10

3
csC

ρτ
0 ρ

5/3
0 + 10csC

ρτ
1 ρ

5/3
0 . (7.68)

7.4.4.4 Pure Neutron Matter

A particular case of isospin-asymmetric and spin-symmetric nuclear matter is pure
neutron matter (PNM) obtained for Iτ = 1 and Iσ = Iστ = 0. The EOS of PNM
reads

E

A
= 3

5

�
2

2m
cnρ

2/3
0 +Cρρ0 ρ0 +Cρρ1 ρ0 + 3

5
cnC

ρτ
0 ρ

5/3
0 + 3

5
cnC

ρτ
1 ρ

5/3
0 . (7.69)

7.4.5 Symmetry Breaking and “Deformation”

There are important points to underline regarding the notions of symmetry breaking
and “deformation” in finite systems. To do so, let us take rotational symmetry and
the deformation of the density distribution as an example. Of course, the discussion
conducted below applies to any of the symmetries of interest.

1. The breaking of a symmetry is never quite real in a finite system. Eventually,
any quantum state of the nucleus does carry good angular momentum (J,M)

such that it is improper to describe it as a wave packet mixing states belonging to
different irreducible representations of SO(3), i.e. carrying different values of J .
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Only in infinite systems characterized by infinite inertia would the sequence of
states belonging to a rotational band be truly degenerate. This makes the sym-
metry breaking real in infinite systems as it offers the possibility to describe the
true ground state as a linear combination of states with different J values. In a
finite system, quantum fluctuations associated with finite inertia eventually lift
the degeneracy such that good symmetry quantum numbers must eventually be
restored.

2. In a finite system, the notion of “deformation” that characterizes the breaking of
a symmetry is thus necessarily an artefact associated with an incomplete theoret-
ical description. As such, the Jπ = 0+ ground state of an even-even nucleus is
never “deformed”, given that the density distribution of any J = 0 quantum state
is spherically symmetric. It is only within an incomplete theoretical description
such as the SR-EDF method that one may speak improperly of a “deformed”
Jπ = 0+ ground state.23 Once rotational symmetry is restored, the correspond-
ing density distribution is indeed spherically symmetric.

3. Within, e.g., the SR-EDF method, one notices that the breaking of the rotational
symmetry depends on the number of elementary constituents of the even-even
nucleus under consideration; i.e. the symmetry does not break in double and sin-
gle magic nuclei while it breaks in essentially all double open-shell nuclei.24

This raises an important question. If all Jπ = 0+ states are eventually equally
spherical in front of god, are “spherical” Jπ = 0+ states more spherical than
“deformed” ones!? To rephrase it, one may ask in what way the intermediate
artefact of “deformation” tells us anything real about the nucleus under consider-
ation? As a matter of fact, the artefact of ground-state “deformation” does not tell
us anything about the ground state but rather about the way the nucleus primarily
excites. In the case of rotational symmetry, the fact that the ground state comes
out to be deformed at the SR-EDF level tells us, at a low theoretical cost, that a
rotational band built on top of it should exist. To reverse engineer the statement,
any experimental spectrum containing a set of states that can be convincingly
ordered as a J (J + 1) sequence above the ground state will see the latter being
deformed within the (incomplete) SR-EDF description.

23It is important to underline at this point that the notion of “deformation” differs depending on
the angular momentum of the targeted many-body state. This is due to the fact that a symmetry-
conserving state with angular momentum J does display non-zero multipole moments of the den-
sity for λ≤ 2J [75]. For example, having a reference state with non-zero quadrupole and hexade-
capole moments does not characterize a breaking of rotational symmetry if one means to describe
a J = 2 state. In such a case, one must check multipoles with λ > 4 (or any odd multipole) to
state whether rotational symmetry is broken or not. It happens that product states of the Bogoli-
ubov type usually generate non-zero multipole moments of all (e.g. even) multipolarities as soon
as they display a non-zero collective quadrupole moment. As such, they break rotational symmetry
independent of the angular momentum of the good-symmetry state one is eventually after.
24Of course, the fact that the neutron or proton number is magic is not known a priori but is based
on a posteriori observations and experimental facts. In particular, the fact that traditional magic
numbers, i.e. N,Z = 2,8,20,28,50,82,126, remain as one goes to very isospin-asymmetric nu-
clei is the subject of intense on-going experimental and theoretical investigations [10].
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Table 7.3 Categories of nuclei that tend to break translational, rotational and particle number
symmetries as well as associated patterns in their excitation spectrum

Nuclei Excitation pattern

Space translation �a All Surface vibrations

Gauge rotation ϕ All but double magic ones Energy gap

Space rotation α,β, γ All but singly-magic ones Ground-state rotational bands

To conclude, even though the symmetry breaking is fictitious in a finite system it
leaves its fingerprint on excitation spectra. Such a connection between the two no-
tions is schematically illustrated in Table 7.3 for the three symmetries of present
interest.

7.4.6 Connection to Density Functional Theory?

It has become customary in nuclear physics to assimilate the SR-EDF method, even-
tually including corrections a la Lipkin or Kamlah, with density functional theory
(DFT) at play in electronic systems, i.e. to state that the Hohenberg-Kohn (HK)
theorem [115] underlays nuclear SR-EDF calculations. This is a misconception as
distinct strategies actually support both methods. Whereas the SR-EDF method min-
imizes the energy with respect to a symmetry-breaking trial density, DFT relies on
an energy functional whose minimum must be reached for a local one-body den-
sity25 that possesses all symmetries of the actual ground-state density, i.e. that dis-
plays fingerprints of the symmetry quantum-numbers carried by the exact ground-
state [116]. As a matter of fact, generating a symmetry-breaking solution is known
to be problematic in DFT, as it lies outside the frame of the HK theorem, and is
usually referred to as the symmetry dilemma. To bypass that dilemma and grasp
kinematical correlations associated with good symmetries, several reformulations
of DFT have been proposed over the years, e.g. see Refs. [117, 118].

Recent efforts within the nuclear community have been devoted to formulating a
HK-like theorem in terms of the internal density, i.e. the matter distribution relative
to the center of mass of the self-bound system [119, 120]. Together with an appro-
priate Kohn-Sham scheme [120], it allows one to reinterpret the SR-EDF method as
a functional of the internal density rather than as a functional of a laboratory density
that breaks translational invariance. This constitutes an interesting route whose ulti-
mate consequence would be to remove entirely the notion of breaking and restora-
tion of symmetries from the EDF approach and make the SR formulation a complete
many-body method, at least in principle. To reach such a point though, the work of
Refs. [119, 120] must be extended, at least, to rotational and particle-number sym-
metries, knowing that translational symmetry was somewhat the easy case to deal

25The scheme can be extended to a set of local densities or to the full density matrix.
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with given the explicit decoupling of internal and center of mass motions. Going in
such a direction, an interesting formulation was recently proposed that provides the
Schroedinger equation based on collective Hamiltonian with a firm ground [121].
This problem deserves significant attention in the future.

7.5 Multi-reference Implementation

In a finite system, quantum fluctuations eventually make the symmetry breaking
fictitious such that good symmetries must eventually be restored. From a group the-
ory perspective, the diagonal energy kernel E[g,g] associated with a symmetry
breaking state |Φ(g)〉 mixes irreducible representations of the symmetry group of
interest, and so does ESRGS . The symmetry restoration consists of extracting ener-
gies that can be put in one-to-one correspondence with Irreps of the group. In terms
of the schematic “mexican-hat” of Fig. 7.2, doing so corresponds to incorporating
zero-energy fluctuations along the phase of the order parameter.

Furthermore, fluctuations of |g|, i.e. configuration mixing along the radial co-
ordinate of the “mexican-hat”, must be considered at the same time. This is well
illustrated by Fig. 7.3. On the one hand, the SR energy landscape of 240Pu is stiff in
the vicinity of its minimum and well separated from the secondary minimum ten-
tatively associated with a fission isomer. On the other hand, 202Rn is “soft” with
respect to axial quadrupole deformation and displays two equally pertinent oblate
and prolate minima that are separated by a small barrier of about 2 MeV height.
While the SR minimum provides a reasonable picture of what the intrinsic state of
240Pu might be, no single reference state characterized by a fixed value of |g| = ρ20
is entitled to do so for 202Rn, i.e. fluctuations in |g| = ρ20 are expected to be large a
priori.

Within the EDF method, the large amplitude collective motions associated with
the fluctuations of both the phase α and the magnitude |g| of the order parame-
ters are accounted for by the multi-reference framework. In doing so, a MR-EDF
calculation accesses collective, i.e. “rotational” and “vibrational”, excitations while
incorporating associated correlations in the ground state. Technically speaking, the
MR step invokes the complete set of product states {|Φ(|g|α)〉 =R(α)|Φ(|g|0)〉; |g| ∈
[0,+∞[;α ∈DG } such that the MR energy mixes off-diagonal energy E[g′, g] and
norm N [g′, g] kernels associated with all pairs of states belonging to that set (see
below). The restoration of symmetries performed after variation is presently consid-
ered, i.e. the states {|Φ(|g|0)〉} are determined prior to the MR step through repeated
SR calculations. A more involved and performing approach consists of determining
|Φ(|g|0)〉 through the minimization of the symmetry-restored energy E λ|g| defined be-
low, i.e. while including the effect of the fluctuations associated with the restoration
of the good symmetry [51].

As mentioned in the introduction, a key aspect of the MR formulation provided
below is that it is conducted rigorously from a mathematical viewpoint on the basis
of a generic EDF kernel E[g′, g] that does not necessarily refer to a pseudo Hamil-
ton operator. In particular, the restoration of symmetries is shown to be properly
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formulated without making any reference to a projected state [70], which is a ne-
cessity in the general EDF context. This however does not guarantee that the MR
formalism is sound from a physical standpoint as will be illustrated in Sect. 7.5.8.

7.5.1 Symmetry-Restored Kernels

One starts by considering energy and norm kernels as two functions defined over
the domain26 DG and by decomposing them over the Irreps of G according to
Eq. (7.10), i.e.

N
[∣∣g′∣∣0, |g|α]≡∑

λab

N λ
ab

[∣∣g′∣∣, |g|]Sλab(α), (7.70a)

E
[∣∣g′∣∣0, |g|α]N[∣∣g′∣∣0, |g|α]≡∑

λab

E λab
[∣∣g′∣∣, |g|]N λ

ab

[∣∣g′∣∣, |g|]Sλab(α), (7.70b)

where the sum runs over all Irreps. Multiplying Eqs. (7.70a), (7.70b) by Sλ∗ab (α),
integrating it over the domain of the group and using orthogonality relationship (7.9)
allows one to extract the expansion coefficients associated with a specific Irrep, i.e.

N λ
ab

[∣∣g′∣∣, |g|]= dλ

vG

∫
DG

dm(α)Sλ∗ab (α)N
[∣∣g′∣∣0, |g|α], (7.71a)

E λab
[∣∣g′∣∣, |g|]N λ

ab

[∣∣g′∣∣, |g|]

= dλ

vG

∫
DG

dm(α)Sλ∗ab (α)E
[∣∣g′∣∣0, |g|α]N[∣∣g′∣∣0, |g|α]. (7.71b)

The integration over DG in Eqs. (7.71a), (7.71b) amounts to performing a mix-
ing along the phase of the order parameter in order to lift the degeneracy associ-
ated with the fictitious Goldstone mode. As stated earlier, Eqs. (7.70a), (7.70b)–
(7.71a), (7.71b) prove that the extraction of the symmetry-restored energy kernel
E λab[|g′|, |g|] can be rigorously formulated [70] on the basis of a general EDF ker-
nel E[g′, g] that satisfies the minimal set of properties introduced in Sect. 7.3, i.e.
it is not necessary for such a kernel to derive from a pseudo Hamilton operator
(see Sect. 7.5.3 for further discussions). In such a general situation, one cannot and
should not invoke a projected state as is (incorrectly) done in standard presenta-
tions of the MR-EDF formalism. The above derivation does demonstrate that the
projected state can indeed be bypassed without any difficulty.

As Sλab(0)= δab for any λ, setting α = 0 into Eqs. (7.70a), (7.70b) provides a sum
rule relating symmetry-restored energy and norm kernels to un-rotated symmetry-

26We take advantage of property (7.16) to fix one of the two phases involved to zero.
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breaking kernels, i.e.

N
[∣∣g′∣∣0, |g|0]=∑

λa

N λ
aa

[∣∣g′∣∣, |g|], (7.72a)

E
[∣∣g′∣∣0, |g|0]N[∣∣g′∣∣0, |g|0]=∑

λa

E λaa
[∣∣g′∣∣, |g|]N λ

aa

[∣∣g′∣∣, |g|], (7.72b)

where the independence of E λaa[|g′|, |g|] and N λ
aa[|g′|, |g|] on a has not been explic-

itly utilized yet. Exploiting it and particularizing Eqs. (7.72a), (7.72b) to |g′| = |g|
provides two sum rules

1 =
∑
λ

dλN
λ|g|, (7.73a)

ESR|g| =
∑
λ

dλN
λ|g|E λ|g|, (7.73b)

the second of which relates, for a given value of |g|, the SR energy to the complete
set of symmetry-restored energies E λ|g|. In Eqs. (7.73a), (7.73b) simplified notations

E λ|g| ≡ E λaa[|g|, |g|] and N λ|g| ≡N λ
aa[|g|, |g|] have been used.

First and foremost, sum rule (7.73b) provides a consistency checks in numerical
codes used to extract MR energies. However, such a decomposition of the SR energy
has shown to be very helpful in pinning down profound issues with the formalism
when specifying to U(1) symmetry. Refer to Sect. 7.5.8 for the corresponding dis-
cussion.

7.5.1.1 Specification to U(1)

Of particular interest is the specification of Eqs. (7.70a), (7.70b)–(7.73a), (7.73b)
to the U(1) group, i.e. to particle-number restoration (PNR). Singling out the order
parameter g ≡ ‖κ‖eiϕ associated with the breaking of nucleon number and omitting
the other collective variables at play, one obtains the Fourier decomposition of the
kernels

N
[∥∥κ ′∥∥0,‖κ‖ϕ]≡ ∑

N∈Z
N N

[∥∥κ ′∥∥,‖κ‖]eiNϕ, (7.74a)

E
[∥∥κ ′∥∥0,‖κ‖ϕ]N[∥∥κ ′∥∥0,‖κ‖ϕ]
≡

∑
N∈Z

E N
[∥∥κ ′∥∥,‖κ‖]N N

[∥∥κ ′∥∥,‖κ‖]eiNϕ. (7.74b)

From a mathematical viewpoint, the sum in Eqs. (7.74a), (7.74b) runs a priori
over all Irreps of U(1), i.e. over both positive and negative integers. Following
Eqs. (7.71a), (7.71b), one extracts particle-number restored kernels through

N N
[∥∥κ ′∥∥,‖κ‖]= 1

2π

∫ 2π

0
dϕe−iNϕN

[∥∥κ ′∥∥0,‖κ‖ϕ], (7.75a)
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E N
[∥∥κ ′∥∥,‖κ‖]N N
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= 1

2π
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0
dϕe−iNϕE

[∥∥κ ′∥∥0,‖κ‖ϕ]N[∥∥κ ′∥∥0,‖κ‖ϕ]. (7.75b)

Setting ϕ = 0 into Eqs. (7.74a), (7.74b) provides a sum rule relating particle-
number-restored energy and norm kernels to un-rotated particle-number-breaking
kernels, i.e.

N
[∥∥κ ′∥∥0,‖κ‖0

]≡ ∑
N∈Z

N N
[∥∥κ ′∥∥,‖κ‖], (7.76a)
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Further setting ‖κ ′‖ = ‖κ‖ provides two sum rules

1 =
∑
N∈Z

N N‖κ‖, (7.77a)

ESR‖κ‖ =
∑
N∈Z

N N‖κ‖E N‖κ‖, (7.77b)

the second of which relates, for a given value of ‖κ‖, the SR energy to the whole set
of particle-number restored energies E N‖κ‖.

7.5.1.2 Specification to SO(3)

Of particular interest is the specification of Eqs. (7.70a), (7.70b)–(7.73a), (7.73b)
to the SO(3) group, i.e. to angular-momentum restoration (AMR). Singling out the
order parameter associated with the breaking of angular momentum and omitting
the other collective variables at play, one obtains the expansion of the kernels

N
[
ρ′λμ0, ρλμΩ

]≡ ∑
JMK

N J
MK

[
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]
DJ
MK(Ω), (7.78a)
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Following Sect. 7.5.1, one extracts angular-momentum restored kernels through

N J
MK

[
ρ′λμ,ρλμ

]= 2J + 1

16π2

∫
DSO(3)

dΩDJ∗
MK(Ω)N

[
ρ′λμ0, ρλμΩ

]
, (7.79a)
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E JMK
[
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Setting Ω = 0 into Eqs. (7.78a), (7.78b) provides a sum rule relating angular-
momentum restored energy and norm kernels to un-rotated angular-momentum
breaking kernels, i.e.

N
[
ρ′λμ0, ρλμ0

]≡∑
JM

N J
MM

[
ρ′λμ,ρλμ

]
, (7.80a)

E
[
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N
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]≡∑
JM

E JMM
[
ρ′λμ,ρλμ

]
N J
MM

[
ρ′λμ,ρλμ

]
. (7.80b)

Further setting ρ′λμ = ρλμ provides two sum rules

1 =
∑
J

(2J + 1)N J
ρλμ
, (7.81a)

ESRρλμ =
∑
J

(2J + 1)N J
ρλμ

E Jρλμ, (7.81b)

the second of which relates, for a given value of ρλμ, the SR energy to the whole set
of angular-momentum restored energies E Jρλμ .

7.5.2 Full Fledged MR Mixing

In practice, PNR and AMR are often combined. To make formula bearable, we come
back to a generic symmetry group. Starting from the symmetry-restored kernels
extracted through Eqs. (7.71a), (7.71b), one mixes the components27 of the targeted
Irrep and further performs the mixing over the norm of the order parameter to define
the MR energy through

EMRλk ≡ Min
f λk∗|g′ |a

{∑
|g|,|g′|

∑
a,b f

λk∗
|g′|af

λk
|g|bE λab[|g′|, |g|]N λ

ab[|g′|, |g|]∑
|g|,|g′|

∑
a,b f

λk∗
|g′|af

λk
|g|bN λ

ab[|g′|, |g|]
}
. (7.82)

Mixing coefficients f λk|g|b are determined by solving the Hill-Wheeler equation of
motion [122] obtained as a result of minimization (7.82)

∑
|g|b

E λab
[∣∣g′∣∣, |g|]N λ

ab

[∣∣g′∣∣, |g|]f λk|g|b =EMRλk
∑
|g|b

N λ
ab

[∣∣g′∣∣, |g|]f λk|g|b. (7.83)

27Such a mixing does not appear in the case of the U(1) group given that its Irreps are of dimen-
sion 1.
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Equation (7.83) denotes an eigenvalue problem, expressed in a non-orthogonal ba-
sis, whose eigen-solution is nothing but the MR energy EMRλk . As a matter of fact,
Eq. (7.83) provides a complete set of excitation energies {EMRλk ; k = 0,1,2, . . .} for
each value of the symmetry quantum number λ. As such, one accesses the low-lying
collective spectroscopy along with associated correlations in the ground state.

7.5.3 Pseudo-potential-based Energy Kernel

In the particular case of a pseudo-potential-based EDF kernel, the MR energy
(Eq. (7.82)) can be factorized into a more conventional form invoking a MR wave
function. The derivation provided below does not hold when employing an EDF
kernel that does not strictly derive from a pseudo Hamiltonian, e.g. for any of the
modern Skyrme, Gogny and relativistic parametrizations. As such, the MR energy
EMRλk cannot be expressed in terms of a MR wave-function in the most general EDF
context, e.g. when using a density-dependent “Hamiltonian”. Such a fact is system-
atically overlooked in standard presentations of the EDF theory, which constitutes a
problem given the intimate connection between such a feature and the pathologies
alluded to in Sect. 7.5.8.

In virtue of Eq. (7.21a), one can first re-express the symmetry-restored energy
and norm kernels (Eqs. (7.71a), (7.71b)) according to

N λ
ab

[∣∣g′∣∣, |g|] = 〈
Φ(|g′|0)

∣∣Pλab∣∣Φ(|g|0)〉, (7.84a)

E λab
[∣∣g′∣∣, |g|]N λ

ab

[∣∣g′∣∣, |g|] = 〈
Φ(|g′|0)

∣∣HpseudoP
λ
ab

∣∣Φ(|g|0)〉, (7.84b)

where the transfer operator is introduced as

Pλab ≡
dλ

vG

∫
DG

dm(α)Sλ∗ab (α)R(α). (7.85)

Further considering that PλacP
ζ
db = δλζ δcdP λab and that [Hpseudo,P

λ
ac] = 0, as well as

that Pλac = (P λca)†, one can finally factorize the full fledged MR energy according to

EMRλk ≡ Min
|Ψ λck 〉

{ 〈Ψ λck |Hpseudo|Ψ λck 〉
〈Ψ λck |Ψ λck 〉

}
, (7.86)

where the MR wave-function is defined by

∣∣Ψ λck 〉≡∑
|g|

∑
b

f λk|g|bP λcb
∣∣Φ(|g|0)〉, (7.87)

and where the mixing coefficients are obtained through Eq. (7.83). In such a con-
text, one recovers the textbook Hamiltonian-based GCM [51] performed along the
variable |g| on the basis of symmetry-projected HFB wave-functions.
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7.5.4 Other Observables

Other observables besides binding energies and low-lying excitation spectra can
be extracted from MR-EDF calculations, once Eq. (7.83) has been solved. Typical
quantities of interest are expectation values and transition matrix elements of elec-
tromagnetic and electroweak operators. Recently, ground-state density distributions
have also been extracted [123, 124] whereas transition densities or pair transfer form
factors could be calculated in the future.

The archetypal quantity one wishes to compute is the B(E2) [125]

B
(
E2;J ′k′ → Jk

)= 1

2J ′ + 1

+J∑
M=−J

+J ′∑
M ′=−J ′

+2∑
μ=−2

∣∣〈Ψ JMk ∣∣Q2μ
∣∣Ψ J ′M ′
k′

〉∣∣2, (7.88)

where the electric quadrupole moment operator Q2μ = e∑p r
2
pY2μ(Ωp) is written

for point protons with their bare electric charge e. Independent of whether one uses
a pseudo-potential EDF kernel or not, auxiliary observables are computed as matrix
elements of bare operators in between MR wave-functions. The latter can always
been built according to Eq. (7.87) as soon as Eq. (7.83) is solved to extract f λk|g|b .
In view of the overall accuracy of the method, the current agreement of computed,
e.g., B(E2) or B(E3) values with experimental data is considered to be reasonably
good and justifies this common practice. Would the accuracy of the method improve
significantly, one could consider going beyond such a paradigm by, e.g., designing
density functional kernels for auxiliary observables as well.

In the present context, computing Eq. (7.88) eventually boils down to evaluating
the matrix element of a tensor operator, e.g. Q2μ, in between two reference states
on which different transition operators are applied. Coming back to our general
notations, this corresponds to computing

〈
Φ(|g′|0)

∣∣Pλ′a′c′T λ′′μ P λca∣∣Φ(|g|0)〉 = 2λ+ 1

2λ′ + 1

(
λλ′′λ′

∣∣cμc′)
+λ∑
ν=−λ

(
λλ′′λ′

∣∣a, a − ν, ν)

× 〈
Φ(|g′|0)

∣∣Pλ′a′νT λ′′a−ν∣∣Φ(|g|0)〉, (7.89)

where the matrix element appearing on the right-hand side can eventually be eval-
uated, after expanding Pλ

′
a′ν according to Eq. (7.85), on the basis of the generalized

Wick theorem [85].

7.5.5 Dynamical Correlations

Let us now summarize the way correlations are incorporated in the nuclear EDF
approach. The power of the method relies on (i) the parametrization of the “bulk”
of correlations, i.e. the part of the binding energy that varies smoothly with neutron
and/or proton numbers, under the form of a functional of the one-body density ma-
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Fig. 7.5 Upper panels: energy of 240Pu and 202Rn as a function of the axial quadrupole degree of
freedom (|g| ≡ ρ20): single-reference calculation (full black line), with the added effect of particle
number and (J = 0) angular momentum restorations (full red line) as well as of the shape mixing
along |g| ≡ ρ20 (black circle labelled as “GCM”). Lower left panel: energy of 208Pb as a function
of the axial octupole degree of freedom (|g| ≡ ρ30): single-reference calculation (full black line),
with the added effect of (positive) parity restoration (full red line) and mixing of shapes along
|g| ≡ ρ30 (black circle labelled as “GCM”). Lower right panel: energy of 120Sn as a function of
the pairing degree of freedom (|g| ≡ ‖κ‖): single-reference calculation (full black line), with the
added effect of neutron number restoration (full red line) and mixing along |g| ≡ ‖κ‖ (black circle
labelled as “GCM”). Left vertical axes are rescaled with respect to the symmetry conserving, i.e.
non-deformed, reference point. Please note that |q| stands for |g| in the present figure. Taken from
Ref. [108]

trices and on (ii) the grasping of correlations that vary quickly with the filling of nu-
clear shells through the breaking of symmetries along with the subsequent treatment
of the fluctuations of the associated order parameters. Incorporating the second type
of correlations within symmetry-conserving approaches, e.g. the CI method, would
necessitate tremendous computational efforts in heavy open-shell nuclei.

Of course, the success of the approach eventually relies on the validity of the
empirical decoupling between the bulk of correlations and those that are more ex-
plicitly accounted for. To some extent, the different scales that characterize these
two categories of correlations play in favour of such an empirical decoupling. Let
us come back to the four nuclei considered in Fig. 7.3 to illustrate this point. Fig-
ure 7.5 separates the binding energy of 240Pu, 202Rn, 208Pb and 120Sn into
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Table 7.4 Schematic classification of correlation energies as they naturally appear in the nuclear
EDF method. The quantity Aval denotes the number of valence nucleons while Gdeg characterizes
the degeneracy of the valence major shell

Correlation energy Treatment Scales as Varies with

Bulk Summed into EDF kernel ∼8 A MeV A

Static collective Finite order parameter |g| �25 MeV Aval,Gdeg

Dynamical collective Fluctuations of g �5 MeV Aval,Gdeg

1. the symmetry conserving SR energy,
2. the symmetry-unrestricted SR energy,
3. the symmetry-restored MR energy,
4. the full fledged MR-EDF energy.

The symmetry conserving SR-EDF result (full black line at |g| = 0) provides the
“bulk” part of the energy and accounts for, at least, 98 % of the binding energy.
Authorizing the breaking of symmetries (absolute minimum of the full black line)
does not bring anything to stable double closed-shell nuclei such as 208Pb. However,
the spontaneous breaking of rotational symmetry brings up to 20 MeV correlation
energy in heavy double open-shell nuclei such as 240Pu, which accounts for about
2 % of the binding. In a transitional nucleus such as 202Rn, the symmetry break-
ing only accounts for 2 MeV but it signals that such a nucleus should not even be
considered at the SR level because of the anticipated large amplitude fluctuations.
Superfluidity associated with the breaking of neutron and/or proton numbers typi-
cally accounts for 2 MeV in singly-open shell nuclei such as 120Sn. Most important,
including pairing is mandatory to describe other observables, e.g. the odd-even mass
staggering, individual excitations of even-even nuclei or the moment of inertia of ro-
tating systems. Restoring symmetries (absolute minimum of the full red line) brings
in additional correlations, even in nuclei whose SR minimum is symmetry conserv-
ing. Typically, restoring angular momentum (240Pu and 202Rn), parity (208Pb) or
neutron number (120Sn) add between 1 MeV and 3 MeV correlation energy, de-
pending on how much the symmetry is broken in the first place. Last but not least,
the fluctuations of |g| (“GCM” circle) differentiate nuclei that are stiff (i.e. 240Pu,
208Pb, 120Sn) from those that are soft (e.g. 202Rn) with respect to the collective de-
gree of freedom under study. While the correlation energy is of the order of one or
two hundreds keV in the former, it can be as large as 1 MeV in the latter. Although
the examples discussed here are only illustrative, they are quite representative of
the various behaviours one may encounter. Eventually, Table 7.4 recall the various
categories of correlations at play and summarizes schematically the scale and the
scaling that characterize them. For systematic studies on how correlations impact
binding energies and other observables in the context of MR-EDF calculations, see
Refs. [126–128].
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7.5.6 State-of-the Art Calculations

As of today, full fledged MR-EDF calculations are limited to even-even nuclei. In
their most advanced form, they simultaneously restore neutron number, proton num-
ber and angular momentum from triaxially deformed Bogoliubov states and further
perform the mixing of quadrupole shapes (|g| = ρ2μ withμ=−2,0,2). Such calcu-
lations are available for non-relativistic Skyrme [125] and Gogny [129] functionals
as well as for relativistic Lagrangians [130]. Still, those cutting-edge calculations are
currently limited to light nuclei such that approximations are needed (e.g. limiting
oneself to axially deformed shapes) to tackle heavy nuclei. An important effort is
also being pursued to restore both good angular momentum and isospin from triaxi-
ally deformed Slater determinants [131]. This is relevant to the evaluation of isospin
mixing and isospin-breaking corrections to super-allowed β-decay in view of testing
the unitarity of the CKM matrix [132]. The versatility of the method also permits to
address delicate questions such as the quest of neutrino-less double β-decay to pin
down the Dirac or Majorana character of neutrinos [133].

The current forefront corresponds to extending MR-EDF schemes in several
(complementary) directions. First and foremost, it is crucial to have the ability to
perform MR-EDF calculations of odd-even and odd-odd nuclei. This poses a great
technical challenge [72] but will extend the reach of the method tremendously and
greatly enhance the synergy with upcoming experimental studies. Along the same
line, MR-EDF schemes must be extended such as to include diabatic effects [134],
i.e. configurations generated through an even number of quasi-particle excitations.
This is expected to improve significantly the description of, e.g., the first 2+ ex-
cited state in near-spherical nuclei and to allow a clean description of K isomers.
Also of importance is the implementation of the MR method on the basis of refer-
ences states generated through cranked SR calculations, i.e. calculations employing
a constraints on 〈Φ(g)|Jx,y,z|Φ(g)〉 �= 0 [135–137]. By accounting for Coriolis ef-
fects, this is expected to improve moments of inertia that are systematically too low
in MR calculations based on uncranked states. Eventually, state-of-the-art calcula-
tions should combine quadrupole and octupole degrees of freedom [138] as well as
the mixing over ‖κ‖ [139, 140]. The latter also impacts moment of inertia signifi-
cantly and authorizes the description of pairing fluctuations and pairing vibrations
near closed shell, as well as the computation of pair transfer overlap functions.

All such extensions are particularly timely given that upcoming RIB facilities
are accessing an increasingly larger number of short-lived atomic nuclei. Among
the latter, exotic nuclei with a large neutron excess are likely to require more sys-
tematically the inclusion of MR correlations from the outset, i.e. to be less-good
“mean-field” nuclei than those located near the valley of β stability.

7.5.7 Approximations to Full Fledged MR-EDF

Several approximations to or variants of the full fledged MR-EDF approach are
being pursued with great success. It is beyond the scope of the present lecture notes
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to review them. Let us however mention the most important ones and refer the reader
to recent associated works.

The quasi-particle random phase approximation (QRPA) can be motivated in
many different ways, one of which is the approximation of the MR kernels in
the limit where |Φ(g′)〉 and |Φ(g)〉 differ harmonically from a common reference
state [83, 84]. Quasi-particle random phase approximation, along with its exten-
sions, provides vibrational excitations of various multipolarities and associated
ground-state correlations. This includes low-lying states as well as giant resonances.
A limitation of such an approximation is its inability to describe violently anhar-
monic systems undergoing large amplitude motion. There is a significant on-going
effort to develop the method in deformed nuclei [141–145] on the basis of com-
plete EDF parametrizations and efficient algorithms [146–148]. This will permit to
address many upcoming challenges including the quest of potentially new exotic
vibrational modes [149].

Second is the collective (e.g. Bohr) Hamiltonian that can be motivated in two
different ways, one of which is the (topological) Gaussian overlap approxima-
tion [150–152] of the transition EDF kernels. In practice, however, inertia param-
eters are not computed from available full fledged MR-EDF calculations. Indeed,
the latter are not complete enough at this point in time to compute inertia param-
eters reliably. Five-dimensional collective Hamiltonians built from non-relativistic
Skyrme [153, 154] and Gogny [155, 156] functionals as well as from relativistic
Lagrangians [157] are available. Work is currently being pursued to improve on
the Inglis-Belyaev moments of inertia and cranking mass parameters by means of
Thouless Valentin [158, 159]. Within such a scheme, low-lying collective spectra
of heavy even-even nuclei can be computed while including the full quadrupole
dynamics.

Last but not least, it is worth mentioning the recent revival of the interacting bo-
son model (IBM) within a microscopic setting, i.e. based on the mapping of triaxial
HFB energy landscapes generated from a Gogny functional [160] or a relativistic
Lagrangian [161]. Such a method allows the efficient description of low-lying col-
lective spectra of complex heavy nuclei.

As for full fledged MR-EDF calculations, modern accounts of the three above
methods are only available for even-even nuclei. Extensions to odd-even and odd-
odd nuclei must be envisioned in the future.

7.5.8 Pathologies of MR-EDF Calculations

In spite of the mathematically sound formulation of the MR-EDF method provided
above, pathologies were identified under the form of spurious divergences [162,
163] and steps [53] in potential energy curves obtained from PNR calculations.
Examples are given in Fig. 7.6 for two different Skyrme parametrizations of
the EDF kernel. The occurrence of such anomalies were analysed in details in
Refs. [53, 55, 56] and put in connection with non-analyticities of the energy ker-
nel over the complex plane, after performing the continuation z = eiϕ , where ϕ
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Fig. 7.6 Proton-number restored energy E Zρ20
of 18O as a function of the axial quadrupole defor-

mation (β2 is a dimensionless measure of ρ20) using 5 and 199 discretization points in the integral
over the gauge angle (Eqs. (7.75a), (7.75b)). Left panel: calculations performed with the SLy4
Skyrme parametrization and a density-independent pairing interaction. Right panel: calculations
performed with the SIII Skyrme parametrization and a density-independent pairing interaction.
Taken from Ref. [55]

denotes the gauge angle characterizing the off-diagonal energy kernel at play (see
Sect. 7.3.2). In particular, the problem manifests differently depending on the ana-
lytical structure of the EDF kernel [55]. The left panel of Fig. 7.6 is characteristic of
the general case where divergences occur whenever a proton and/or neutron single-
particle level crosses the Fermi energy [53]. Additionally, the potential energy sur-
face displays finite steps across any such divergence. The right panel of Fig. 7.6
illustrates the particular case of a functional that is strictly bilinear in the density
matrices of a given isospin species. In such a situation, no divergence occurs and
one is only left with finite discontinuities.

A step towards the formulation of a remedy to the problem was made in
Refs. [54–56]. Firstly, the problem was shown to relate to the breaking of Pauli’s
principle discussed in Sect. 7.3.3. Specifically, spurious contributions associated
with self-interaction and self-pairing processes are multiplied with dangerous
weights in the off-diagonal energy kernel E[g′, g], which results in the anomalies
illustrated in Fig. 7.6. Secondly, divergences and steps were shown to constitute the
visible part of the problem only, i.e. PNR energies are not only contaminated where
divergences and steps occur but also away from them.

Another striking manifestation of spurious self-interaction and self-pairing pro-
cesses in PNR calculations was identified in Ref. [55]. Whereas contributions to sum
rule (7.77b) corresponding to N ≤ 0 are zero in the absence of self-interaction and
self-pairing, i.e. when working within the pseudo-potential-based approach, non-
analyticities of the energy kernel over the complex plane translate into28 having
N NE N �= 0 for N ≤ 0. Such a feature is illustrated in Fig. 7.7 for the interaction

28The overlap kernel being analytical over the complex plane, it is straightforward to prove that
N N = 0 for N ≤ 0.
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Fig. 7.7 Proton-number-
restored kernels as a function
of the Z one restores. Upper
panel: norm kernel N Z .
Middle panel: spurious
contribution to the (weighted)
energy kernels. Lower panel:
uncorrected N ZE Z and
corrected N ZE ZREG
proton-number-restored
energy kernels. All results are
obtained using the same SR
state calculated for 18O at a
deformation of β2 = 0.371.
The neutron number is not
restored. Taken from
Ref. [55]

energy part (i.e. the kinetic energy contribution is omitted) obtained from PNR cal-
culation of 18O. The distribution of absolute values of N ZE Z as a function of Z
does not follow the distribution of the weights N Z displayed in the upper panel.
Instead, it has a long tail that spreads visibly to Z =−20 and Z = 34, before it can-
not be distinguished from numerical noise anymore. In these tails, N ZE Z displays
alternating signs, which is clearly unphysical.

The fact that PNR calculations do provide non-zero (weighted) energies for neg-
ative or null particle numbers is certainly the most illuminating proof that having
a mathematically well-founded formalism is necessary but not sufficient to make
it physically meaningful, i.e. while mathematics makes sum rule (7.77b) run over
all Irreps a priori, physics requires that the expansion coefficients associated with
negative integers are zero, which is not guaranteed in general and is not the case for
any existing modern parametrization of the EDF kernel.

Although most clearly highlighted through PNR calculations, i.e. in calculations
realizing the mixing over the gauge angle, pathologies due to the violation of Pauli’s
principle contaminate any type of MR mixing. Figure 7.8 displays the result of a
MR-EDF calculation of 18O including both PNR and AMR, and compares it to the
result obtained via PNR only.

It is interesting to note at this point that certain approximations to full fledged
MR-EDF calculations [48], i.e. calculations based on a collective Hamiltonian or on
QRPA, avoid the dramatic pathologies discussed above by bypassing the problem
from the outset, i.e. thanks to the approximation to the off-diagonal kernels that
define them. However, such methods are not free from less dramatic, i.e. smooth
and finite, contaminations associated with the presence of spurious self-interaction
and self-pairing in the energy kernel. This question deserves attention in the future.
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Fig. 7.8 Proton-number- and angular-momentum-restored energies of 18O for various values
of J as a function of the axial quadrupole deformation. The integral over the gauge angle
(Eqs. (7.75a), (7.75b)) uses 99 discretization points. Calculations are performed with the SIII
Skyrme parametrization and a density-dependent pairing interaction. Solid lines defined in the
legend are not shown in the present figure but are (will be) visible in the original reference [164].
The curve labelled with “N,Z only” only performs the restoration of particle number

7.5.9 Towards Pseudo-potential-based Energy Kernels

In order to resolve the difficulties illustrated above, a regularization of the off-
diagonal energy kernel was designed for parametrizations that are strictly polyno-
mial in the density matrices [54]. The method was meant to eliminate a posteriori
the pathologies contaminating MR-EDF calculations without fully enforcing the
Pauli principle from the outset. Exposing the regularization method is beyond the
scope of the present document and we refer the reader to Ref. [54] for details. As of
today, the regularization method has been implemented not only in pure PNR cal-
culations [55] but also for the most general MR-EDF calculations available [164].
This includes the most advanced ones aiming at the description of odd nuclei [72].
In spite of solving the problem for pure PNR calculations, the regularization method
leaves implementations that go beyond it, e.g. calculations mixing PNR and AMR,
with unwanted pathologies [164].

As of today, the only viable route to a sound MR-EDF formalism relies on energy
kernels that strictly derive from a pseudo-potential [75], i.e. kernels that enforce the
Pauli principle from the outset to bypass spurious self-interaction and self-pairing
processes. Several efforts [75, 104–106] in this direction are currently being pur-
sued as alluded to in Sect. 7.3.4.5. This constitutes a turning point in the construc-
tion of nuclear EDF parametrizations. It is beyond the scope of the present lec-
ture notes to expose such developments. Let us however briefly explain why such
a route is not straightforward to follow. As a matter of fact, none of the modern,
i.e. Skyrme, Gogny or relativistic, parametrizations belong to the category of strict



344 T. Duguet

pseudo-potential-based EDF kernels. The reason for such a situation is precisely
that practitioners have moved away from the strict pseudo-potential-based philoso-
phy throughout the last four decades because of its apparent lack of flexibility and
its inability to produce high-quality EDF parametrizations. The challenge is thus to
develop pseudo-potentials that are more general than those considered in the past
such that they can provide a high-quality phenomenology. The pseudo potentials
must however be simple enough for the fit of its free parameters to be meaning-
fully handled. Several new families of EDF parametrizations strictly deriving from
pseudo potentials and allowing for safe MR-EDF calculations can be expected to be
published in the coming years.

7.5.10 Towards Non-empirical Energy Kernels

On the longer term, it is mandatory to go beyond the empirical formulation of the nu-
clear EDF method in order to augment its predictive power. This requires the design
of ab-initio many-body methods from which both SR- and MR implementations
of the EDF method, i.e. both diagonal and off-diagonal energy functional kernels,
can be derived through a set of controlled approximations. This is meant to lead
to so-called non-empirical energy functionals possessing a link to the underlying
nuclear Hamiltonian describing few-body scattering and bound-state observables.
The objective is not to replace but rather complement the development of empirical
EDFs based on trial and error by combining the predictive character of an ab-initio
method with the gentle numerical scaling of EDF calculations. Indeed, while empir-
ical EDFs already achieve an accuracy for known observable that will be difficult, if
not impossible, to reach with purely non-empirical functionals, they lack predictive
power away from the experimentally known region of the nuclear chart.

The first way to improve on such limitations consists of using “pseudo-data” gen-
erated from ab-initio calculations for nuclei located in the experimentally unknown
region (i) for the fitting procedure of EDF parametrizations and (ii) to benchmark
extrapolations from such EDF parametrizations. In this way, unknown couplings
of the empirical EDF parametrization can be “microscopically” constrained. Even-
tually, the goal is to discriminate between different functional forms. The benefit
of such an indirect approach is that any ab-initio method that can provide precise
enough benchmarks for the systems and observables of interest can be employed.
However, no direct/explicit connection with vacuum interactions is realized such
that no specific insight about the form of new functional terms that could capture
the missing physics is easily gained in this way, i.e. the predictive power of EDF
calculations away from the benchmarks remains bound to the quality of the postu-
lated functional form such that improvements still rely on trial and error.

A greater challenge is to connect explicitly the form of the energy functional
kernel, in addition to the value of its couplings, to vacuum nuclear interactions.
One is essentially looking for microscopically-educated guesses. Ground-breaking,
though very incomplete, works in this direction have been undertaken recently [165–
170]. Eventually, a fine-tuning of the couplings, within the intrinsic error bars with
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which they will have been produced, can be envisioned [171]. In this context,
microscopically-educated functionals are to be derived through analytical approxi-
mations of the ground-state energy computed via a given ab-initio method of refer-
ence (preferably the same as the one providing benchmarks for observable quanti-
ties). It is a challenging task whose complexity depends on the nuclear Hamiltonian
and the many-body method one starts from. In particular, ab-initio methods that are
amenable to such a mapping must share certain key features of the nuclear EDF
method, the most important of which being the notion of spontaneous symmetry
breaking. Let us take the part of the EDF that drives superfluidity as an example,

i.e. the part that depends on the anomalous pairing tensor κg
′g
ij (see Sect. 7.2.3).

Such a functional dependence of the EDF kernel exists only because pairing cor-
relations are grasped through the breaking of good particle-number associated with
U(1) gauge symmetry. Deriving microscopically-educated EDF kernels can thus
only be achieved starting from an ab-initio method that also incorporates pairing
correlations through the breaking of U(1) gauge symmetry.

7.6 Conclusions

Very significant advances have been made in the last 15 years within the frame of
the nuclear energy density functional method. In doing so, the focus of the field has
shifted in several respects, with the consequences that

1. routine applications have moved from SR to MR calculations,
2. one can address, e.g. neutron-rich, nuclei that do not fit the mean-field paradigm,
3. applications are now equally dedicated to ground and excited states,
4. one can provide both

(a) the detailed quantitative picture of a given system of interest,
(b) study trends through large-scale MR calculations,

5. advances in the field are bound to making consistent progress regarding

(a) the foundations of the approach and its formal consistency,
(b) the rooting of EDFs into basic many-body methods and interactions,
(c) the building of EDFs from improved fitting protocols,
(d) the building of EDF parametrizations from enlarged data sets,
(e) the further development of powerful numerical tools,

while points (a), (b) and (c) were essentially discarded 15 years ago,
6. applications more strongly impact astrophysics and particle physics.

The field is expected to move forward in these directions in the next 10 years. Most
probably, this will be the era of the strong overlapping with emerging ab-initio meth-
ods for mid-mass nuclei and of the materialization of powerful numerical tools dedi-
cated to the description of odd-even and odd-odd nuclei. In addition to these already
on-going trends, one can expect surprises to emerge that will guide the development
of the EDF methods in new directions.
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Appendix: F -Functions

Kinetic densities are expressed in INM in terms of functions F (0)m (Iτ , Iσ , Iστ ),
F
(τ)
m (Iτ , Iσ , Iστ ), F

(σ)
m (Iτ , Iσ , Iστ ) and F (στ)m (Iτ , Iσ , Iστ ) defined through [114]

F (0)m ≡ 1

4

[
(1+ Iτ + Iσ + Iστ )m + (1+ Iτ − Iσ − Iστ )m

+ (1− Iτ + Iσ − Iστ )m + (1− Iτ − Iσ + Iστ )m
]
, (7.90a)

F (τ)m ≡ 1

4

[
(1+ Iτ + Iσ + Iστ )m + (1+ Iτ − Iσ − Iστ )m

− (1− Iτ + Iσ − Iστ )m − (1− Iτ − Iσ + Iστ )m
]
, (7.90b)

F (σ)m ≡ 1

4

[
(1+ Iτ + Iσ + Iστ )m − (1+ Iτ − Iσ − Iστ )m

+ (1− Iτ + Iσ − Iστ )m − (1− Iτ − Iσ + Iστ )m
]
, (7.90c)

F (στ)m ≡ 1

4

[
(1+ Iτ + Iσ + Iστ )m − (1+ Iτ − Iσ − Iστ )m

− (1− Iτ + Iσ − Iστ )m + (1− Iτ − Iσ + Iστ )m
]
. (7.90d)

Their first derivatives with respect to spin, isospin and spin-isospin excesses are

∂F
(τ)
m

∂Iτ
= ∂F

(σ)
m

∂Iσ
= ∂F

(στ)
m

∂Iστ
=mF(0)m−1, (7.91a)

∂F
(0)
m

∂Iτ
= ∂F

(σ)
m

∂Iστ
= ∂F

(στ)
m

∂Iσ
=mF(τ)m−1, (7.91b)

∂F
(0)
m

∂Iσ
= ∂F

(τ)
m

∂Iστ
= ∂F

(στ)
m

∂Iτ
=mF(σ)m−1, (7.91c)

∂F
(0)
m

∂Iστ
= ∂F

(τ)
m

∂Iσ
= ∂F

(σ)
m

∂Iτ
=mF(στ)m−1 , (7.91d)

while their second derivatives are

∂2F
(j)
m

∂I 2
i

=m(m− 1)F (j)m−2, (7.92)
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for any i, j ∈ {0, τ, σ, στ }. Remarkable values are

F
(0)
0 (Iτ , Iσ , Iστ )= 1, F

(i)
0 (Iτ , Iσ , Iστ )= 0, (7.93a)

F
(0)
1 (Iτ , Iσ , Iστ )= 1, F

(i)
1 (Iτ , Iσ , Iστ )= Ii, (7.93b)

and

F (0)m (0,0,0)= 1, (7.94a)

F (i)m (0,0,0)= 0, (7.94b)

F (τ)m (0,1,0)= F (τ)m (0,0,1)= 0, (7.94c)

F (σ)m (1,0,0)= F (σ)m (0,0,1)= 0, (7.94d)

F (στ)m (1,0,0)= F (στ)m (0,1,0)= 0, (7.94e)

F (0)m (1,0,0)= F (0)m (0,1,0)= F (0)m (0,0,1)= 2m−1, (7.94f)

F (τ)m (1,0,0)= F (σ)m (0,1,0)= F (στ)m (0,0,1)= 2m−1, (7.94g)

F (0)m (1,1,1)= F (i)m (1,1,1)= 4m−1, (7.94h)

where i ∈ {τ, σ,στ }.
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